Characteristics and degradation of organic aerosols from cooking sources based on hourly observations of organic molecular markers in urban environments

<p><span id="page3066"/>Molecular markers in organic aerosol (OA) provide specific source information on PM<span class="inline-formula"><sub>2.5</sub></span>, and the contribution of cooking organic aerosols to OA is significant, especially in...

Full description

Bibliographic Details
Main Authors: R. Li, K. Zhang, Q. Li, L. Yang, S. Wang, Z. Liu, X. Zhang, H. Chen, Y. Yi, J. Feng, Q. Wang, L. Huang, W. Wang, Y. Wang, J. Z. Yu, L. Li
Format: Article
Language:English
Published: Copernicus Publications 2023-03-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/23/3065/2023/acp-23-3065-2023.pdf
_version_ 1811157671026360320
author R. Li
R. Li
K. Zhang
K. Zhang
Q. Li
Q. Li
L. Yang
L. Yang
S. Wang
S. Wang
Z. Liu
Z. Liu
Z. Liu
X. Zhang
X. Zhang
X. Zhang
H. Chen
H. Chen
Y. Yi
Y. Yi
J. Feng
J. Feng
Q. Wang
L. Huang
L. Huang
W. Wang
W. Wang
Y. Wang
Y. Wang
J. Z. Yu
J. Z. Yu
L. Li
L. Li
author_facet R. Li
R. Li
K. Zhang
K. Zhang
Q. Li
Q. Li
L. Yang
L. Yang
S. Wang
S. Wang
Z. Liu
Z. Liu
Z. Liu
X. Zhang
X. Zhang
X. Zhang
H. Chen
H. Chen
Y. Yi
Y. Yi
J. Feng
J. Feng
Q. Wang
L. Huang
L. Huang
W. Wang
W. Wang
Y. Wang
Y. Wang
J. Z. Yu
J. Z. Yu
L. Li
L. Li
author_sort R. Li
collection DOAJ
description <p><span id="page3066"/>Molecular markers in organic aerosol (OA) provide specific source information on PM<span class="inline-formula"><sub>2.5</sub></span>, and the contribution of cooking organic aerosols to OA is significant, especially in urban environments. However, the low time resolution of offline measurements limits the effectiveness when interpreting the tracer data, the diurnal variation in cooking emissions and the oxidation process. In this study, we used online thermal desorption aerosol gas chromatography and mass spectrometry (TAG) to measure organic molecular markers in fine particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) at an urban site in Changzhou, China. The concentrations of saturated fatty acids (sFAs), unsaturated fatty acids (uFAs) and oxidative decomposition products (ODPs) of unsaturated fatty acids were measured every 2 h to investigate the temporal variations and the oxidative decomposition characteristics of uFAs in urban environments. The average concentration of total fatty acids (TFAs, sum of sFAs and uFAs) was measured to be <span class="inline-formula">105.70±230.28</span> ng m<span class="inline-formula"><sup>−3</sup></span>. The average concentration of TFAs in the polluted period (PM<span class="inline-formula"><sub>2.5</sub>≥35</span> <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) was 147.06 ng m<span class="inline-formula"><sup>−3</sup></span>, which was 4.2 times higher than that in the clean period (PM<span class="inline-formula"><sub>2.5</sub>&lt;35</span> <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) and higher than the enhancement of PM<span class="inline-formula"><sub>2.5</sub></span> (2.2 times) and organic carbon (OC) (2.0 times) concentrations when comparing the polluted period to the clean period. The mean concentration of cooking aerosol in the polluted period (4.0 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) was about 5.3 times higher than that in the clean period (0.75 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>), which was similar to the trend of fatty acids. Fatty acids showed a clear diurnal variation. Linoleic acid <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a3a809672b156f3719eee3cbaf593ee5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-3065-2023-ie00001.svg" width="8pt" height="14pt" src="acp-23-3065-2023-ie00001.png"/></svg:svg></span></span> stearic acid and oleic acid <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="62d2c8208bbdf49afb8db19c9f7b6b50"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-3065-2023-ie00002.svg" width="8pt" height="14pt" src="acp-23-3065-2023-ie00002.png"/></svg:svg></span></span> stearic acid ratios were significantly higher at dinnertime and closer to the cooking source profile. By performing backward trajectory clustering analysis, under the influence of short-distance air masses from surrounding areas, the concentrations of TFAs and PM<span class="inline-formula"><sub>2.5</sub></span> were relatively high, while under the influence of air masses from easterly coastal areas, the oxidation degree of uFAs emitted from local culinary sources was higher. The effective rate constants (<span class="inline-formula"><i>k</i><sub>O</sub></span>) for the oxidative degradation of oleic acid were estimated to be 0.08–0.57 h<span class="inline-formula"><sup>−1</sup></span>, which were lower than <span class="inline-formula"><i>k</i><sub>L</sub></span> (the estimated effective rate constants of linoleic acid, 0.16–0.80 h<span class="inline-formula"><sup>−1</sup></span>). Both <span class="inline-formula"><i>k</i><sub>O</sub></span> and <span class="inline-formula"><i>k</i><sub>L</sub></span> showed a significant positive correlation with O<span class="inline-formula"><sub>3</sub></span>, indicating that O<span class="inline-formula"><sub>3</sub></span> was the main nighttime oxidant for uFAs in the city of Changzhou. Using fatty acids as tracers, cooking was estimated to contribute an average of 4.6 % to PM<span class="inline-formula"><sub>2.5</sub></span> concentrations, increasing to 7.8 % at 20:00 UTC<span class="inline-formula">+</span>8 h. Cooking was an important source of OC, contributing 8.1 %, higher than the contribution of PM<span class="inline-formula"><sub>2.5</sub></span>. This study investigates the variation in the concentrations and oxidative degradation of fatty acids and corresponding oxidation products in ambient air, which can be a guide for the refinement of aerosol source apportionment and provide scientific support for the development of cooking source control policies.</p>
first_indexed 2024-04-10T05:11:15Z
format Article
id doaj.art-236657b6d96044f1bcfda4ea8287b7a4
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-10T05:11:15Z
publishDate 2023-03-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-236657b6d96044f1bcfda4ea8287b7a42023-03-09T07:23:06ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242023-03-01233065308110.5194/acp-23-3065-2023Characteristics and degradation of organic aerosols from cooking sources based on hourly observations of organic molecular markers in urban environmentsR. Li0R. Li1K. Zhang2K. Zhang3Q. Li4Q. Li5L. Yang6L. Yang7S. Wang8S. Wang9Z. Liu10Z. Liu11Z. Liu12X. Zhang13X. Zhang14X. Zhang15H. Chen16H. Chen17Y. Yi18Y. Yi19J. Feng20J. Feng21Q. Wang22L. Huang23L. Huang24W. Wang25W. Wang26Y. Wang27Y. Wang28J. Z. Yu29J. Z. Yu30L. Li31L. Li32School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, ChinaKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, ChinaSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, ChinaKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, ChinaSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, ChinaKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, ChinaSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, ChinaKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, ChinaSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, ChinaKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, ChinaSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, ChinaKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, ChinaJiangsu Changhuan Environment Technology Co., Ltd., Jiangsu, Changzhou, 213004, ChinaSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, ChinaKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, ChinaJiangsu Changhuan Environment Technology Co., Ltd., Jiangsu, Changzhou, 213004, ChinaSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, ChinaKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, ChinaSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, ChinaKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, ChinaSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, ChinaKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, ChinaSchool of Environmental Studies, China University of Geosciences, Wuhan, 430074, ChinaSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, ChinaKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, ChinaSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, ChinaKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, ChinaSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, ChinaKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, ChinaDepartment of Chemistry, Hong Kong University of Science and Technology, Hong Kong SAR, 999077, ChinaDivision of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong SAR, 999077, ChinaSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, ChinaKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, China<p><span id="page3066"/>Molecular markers in organic aerosol (OA) provide specific source information on PM<span class="inline-formula"><sub>2.5</sub></span>, and the contribution of cooking organic aerosols to OA is significant, especially in urban environments. However, the low time resolution of offline measurements limits the effectiveness when interpreting the tracer data, the diurnal variation in cooking emissions and the oxidation process. In this study, we used online thermal desorption aerosol gas chromatography and mass spectrometry (TAG) to measure organic molecular markers in fine particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) at an urban site in Changzhou, China. The concentrations of saturated fatty acids (sFAs), unsaturated fatty acids (uFAs) and oxidative decomposition products (ODPs) of unsaturated fatty acids were measured every 2 h to investigate the temporal variations and the oxidative decomposition characteristics of uFAs in urban environments. The average concentration of total fatty acids (TFAs, sum of sFAs and uFAs) was measured to be <span class="inline-formula">105.70±230.28</span> ng m<span class="inline-formula"><sup>−3</sup></span>. The average concentration of TFAs in the polluted period (PM<span class="inline-formula"><sub>2.5</sub>≥35</span> <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) was 147.06 ng m<span class="inline-formula"><sup>−3</sup></span>, which was 4.2 times higher than that in the clean period (PM<span class="inline-formula"><sub>2.5</sub>&lt;35</span> <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) and higher than the enhancement of PM<span class="inline-formula"><sub>2.5</sub></span> (2.2 times) and organic carbon (OC) (2.0 times) concentrations when comparing the polluted period to the clean period. The mean concentration of cooking aerosol in the polluted period (4.0 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) was about 5.3 times higher than that in the clean period (0.75 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>), which was similar to the trend of fatty acids. Fatty acids showed a clear diurnal variation. Linoleic acid <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a3a809672b156f3719eee3cbaf593ee5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-3065-2023-ie00001.svg" width="8pt" height="14pt" src="acp-23-3065-2023-ie00001.png"/></svg:svg></span></span> stearic acid and oleic acid <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="62d2c8208bbdf49afb8db19c9f7b6b50"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-3065-2023-ie00002.svg" width="8pt" height="14pt" src="acp-23-3065-2023-ie00002.png"/></svg:svg></span></span> stearic acid ratios were significantly higher at dinnertime and closer to the cooking source profile. By performing backward trajectory clustering analysis, under the influence of short-distance air masses from surrounding areas, the concentrations of TFAs and PM<span class="inline-formula"><sub>2.5</sub></span> were relatively high, while under the influence of air masses from easterly coastal areas, the oxidation degree of uFAs emitted from local culinary sources was higher. The effective rate constants (<span class="inline-formula"><i>k</i><sub>O</sub></span>) for the oxidative degradation of oleic acid were estimated to be 0.08–0.57 h<span class="inline-formula"><sup>−1</sup></span>, which were lower than <span class="inline-formula"><i>k</i><sub>L</sub></span> (the estimated effective rate constants of linoleic acid, 0.16–0.80 h<span class="inline-formula"><sup>−1</sup></span>). Both <span class="inline-formula"><i>k</i><sub>O</sub></span> and <span class="inline-formula"><i>k</i><sub>L</sub></span> showed a significant positive correlation with O<span class="inline-formula"><sub>3</sub></span>, indicating that O<span class="inline-formula"><sub>3</sub></span> was the main nighttime oxidant for uFAs in the city of Changzhou. Using fatty acids as tracers, cooking was estimated to contribute an average of 4.6 % to PM<span class="inline-formula"><sub>2.5</sub></span> concentrations, increasing to 7.8 % at 20:00 UTC<span class="inline-formula">+</span>8 h. Cooking was an important source of OC, contributing 8.1 %, higher than the contribution of PM<span class="inline-formula"><sub>2.5</sub></span>. This study investigates the variation in the concentrations and oxidative degradation of fatty acids and corresponding oxidation products in ambient air, which can be a guide for the refinement of aerosol source apportionment and provide scientific support for the development of cooking source control policies.</p>https://acp.copernicus.org/articles/23/3065/2023/acp-23-3065-2023.pdf
spellingShingle R. Li
R. Li
K. Zhang
K. Zhang
Q. Li
Q. Li
L. Yang
L. Yang
S. Wang
S. Wang
Z. Liu
Z. Liu
Z. Liu
X. Zhang
X. Zhang
X. Zhang
H. Chen
H. Chen
Y. Yi
Y. Yi
J. Feng
J. Feng
Q. Wang
L. Huang
L. Huang
W. Wang
W. Wang
Y. Wang
Y. Wang
J. Z. Yu
J. Z. Yu
L. Li
L. Li
Characteristics and degradation of organic aerosols from cooking sources based on hourly observations of organic molecular markers in urban environments
Atmospheric Chemistry and Physics
title Characteristics and degradation of organic aerosols from cooking sources based on hourly observations of organic molecular markers in urban environments
title_full Characteristics and degradation of organic aerosols from cooking sources based on hourly observations of organic molecular markers in urban environments
title_fullStr Characteristics and degradation of organic aerosols from cooking sources based on hourly observations of organic molecular markers in urban environments
title_full_unstemmed Characteristics and degradation of organic aerosols from cooking sources based on hourly observations of organic molecular markers in urban environments
title_short Characteristics and degradation of organic aerosols from cooking sources based on hourly observations of organic molecular markers in urban environments
title_sort characteristics and degradation of organic aerosols from cooking sources based on hourly observations of organic molecular markers in urban environments
url https://acp.copernicus.org/articles/23/3065/2023/acp-23-3065-2023.pdf
work_keys_str_mv AT rli characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT rli characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT kzhang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT kzhang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT qli characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT qli characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT lyang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT lyang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT swang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT swang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT zliu characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT zliu characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT zliu characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT xzhang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT xzhang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT xzhang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT hchen characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT hchen characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT yyi characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT yyi characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT jfeng characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT jfeng characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT qwang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT lhuang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT lhuang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT wwang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT wwang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT ywang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT ywang characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT jzyu characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT jzyu characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT lli characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments
AT lli characteristicsanddegradationoforganicaerosolsfromcookingsourcesbasedonhourlyobservationsoforganicmolecularmarkersinurbanenvironments