Pullback attractor for N-dimensional thermoelastic coupled structure equations

Abstract In this paper, proving the pullback asymptotic compactness of processes by the aid of a contractive function in space X 0 $X_{0}$ , we prove the existence of a pullback attractor for N-dimensional nonautonomous thermoelastic coupled structure equations u t t + α △ 2 u − [ β + σ ( ∫ Ω ( ∇ u...

Full description

Bibliographic Details
Main Authors: Danxia Wang, Yinzhu Wang
Format: Article
Language:English
Published: SpringerOpen 2018-01-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-017-0921-7
_version_ 1818029466009468928
author Danxia Wang
Yinzhu Wang
author_facet Danxia Wang
Yinzhu Wang
author_sort Danxia Wang
collection DOAJ
description Abstract In this paper, proving the pullback asymptotic compactness of processes by the aid of a contractive function in space X 0 $X_{0}$ , we prove the existence of a pullback attractor for N-dimensional nonautonomous thermoelastic coupled structure equations u t t + α △ 2 u − [ β + σ ( ∫ Ω ( ∇ u ) 2 d x ) ] △ u + γ △ θ + g ( u ) + η u t = h ( x , t ) , in  Ω × [ τ , ∞ ) , θ t − △ θ − γ △ u t = q ( x , t ) in  Ω × [ τ , ∞ ) , $$\begin{aligned} &u_{tt}+\alpha\triangle^{2}u-\biggl[\beta+\sigma\biggl( \int_{\Omega}(\nabla u)^{2}\,dx\biggr)\biggr]\triangle u+ \gamma\triangle\theta+g(u)+\eta u_{t}=h(x,t), \\ &\quad \mbox{in } \Omega \times [\tau,\infty), \\ &\theta_{t}-\triangle\theta-\gamma\triangle u_{t}=q(x,t) \quad \mbox{in } \Omega\times [\tau,\infty), \end{aligned}$$ with the lateral load distribution function h ( x , t ) $h(x,t)$ and the external heat supply function q ( x , t ) $q(x,t)$ unnecessarily bounded. The nonlinear source term g ( u ) $g(u)$ is essentially k 1 ( u + | u | ρ − 1 u ρ + 1 ) $k_{1}(u+\frac{|u|^{\rho-1}u}{\rho+1})$ ( k 1 > 0 ) $(k_{1}>0)$ with 1 < ρ ≤ N N − 2 $1<\rho\leq\frac{N}{N-2}$ if N ≥ 3 $N\geq 3$ and 1 < ρ < ∞ $1<\rho<\infty$ if N = 1 , 2 $N=1,2$ .
first_indexed 2024-12-10T05:20:08Z
format Article
id doaj.art-2376dfc4c9e746a6a0669489f8d1faf8
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-12-10T05:20:08Z
publishDate 2018-01-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-2376dfc4c9e746a6a0669489f8d1faf82022-12-22T02:00:49ZengSpringerOpenBoundary Value Problems1687-27702018-01-012018112110.1186/s13661-017-0921-7Pullback attractor for N-dimensional thermoelastic coupled structure equationsDanxia Wang0Yinzhu Wang1Department of Mathematics, Taiyuan University of TechnologyDepartment of Mathematics, Taiyuan University of Science and TechnologyAbstract In this paper, proving the pullback asymptotic compactness of processes by the aid of a contractive function in space X 0 $X_{0}$ , we prove the existence of a pullback attractor for N-dimensional nonautonomous thermoelastic coupled structure equations u t t + α △ 2 u − [ β + σ ( ∫ Ω ( ∇ u ) 2 d x ) ] △ u + γ △ θ + g ( u ) + η u t = h ( x , t ) , in  Ω × [ τ , ∞ ) , θ t − △ θ − γ △ u t = q ( x , t ) in  Ω × [ τ , ∞ ) , $$\begin{aligned} &u_{tt}+\alpha\triangle^{2}u-\biggl[\beta+\sigma\biggl( \int_{\Omega}(\nabla u)^{2}\,dx\biggr)\biggr]\triangle u+ \gamma\triangle\theta+g(u)+\eta u_{t}=h(x,t), \\ &\quad \mbox{in } \Omega \times [\tau,\infty), \\ &\theta_{t}-\triangle\theta-\gamma\triangle u_{t}=q(x,t) \quad \mbox{in } \Omega\times [\tau,\infty), \end{aligned}$$ with the lateral load distribution function h ( x , t ) $h(x,t)$ and the external heat supply function q ( x , t ) $q(x,t)$ unnecessarily bounded. The nonlinear source term g ( u ) $g(u)$ is essentially k 1 ( u + | u | ρ − 1 u ρ + 1 ) $k_{1}(u+\frac{|u|^{\rho-1}u}{\rho+1})$ ( k 1 > 0 ) $(k_{1}>0)$ with 1 < ρ ≤ N N − 2 $1<\rho\leq\frac{N}{N-2}$ if N ≥ 3 $N\geq 3$ and 1 < ρ < ∞ $1<\rho<\infty$ if N = 1 , 2 $N=1,2$ .http://link.springer.com/article/10.1186/s13661-017-0921-7pullback attractorpullback asymptotically compactcontractive functionthermoelastic coupled structure equations
spellingShingle Danxia Wang
Yinzhu Wang
Pullback attractor for N-dimensional thermoelastic coupled structure equations
Boundary Value Problems
pullback attractor
pullback asymptotically compact
contractive function
thermoelastic coupled structure equations
title Pullback attractor for N-dimensional thermoelastic coupled structure equations
title_full Pullback attractor for N-dimensional thermoelastic coupled structure equations
title_fullStr Pullback attractor for N-dimensional thermoelastic coupled structure equations
title_full_unstemmed Pullback attractor for N-dimensional thermoelastic coupled structure equations
title_short Pullback attractor for N-dimensional thermoelastic coupled structure equations
title_sort pullback attractor for n dimensional thermoelastic coupled structure equations
topic pullback attractor
pullback asymptotically compact
contractive function
thermoelastic coupled structure equations
url http://link.springer.com/article/10.1186/s13661-017-0921-7
work_keys_str_mv AT danxiawang pullbackattractorforndimensionalthermoelasticcoupledstructureequations
AT yinzhuwang pullbackattractorforndimensionalthermoelasticcoupledstructureequations