Enzyme Detection and Metabolic Process Tracking of Ethanol Fermentation by a Natural Alginate Fermentation Strain

ABSTRACT Alginate is a major component of brown algae, but it cannot be utilized for ethanol fermentation by industrial microorganisms. A natural alginate degrading and ethanol producing strain was obtained in our previous research. However, the research on the ethanol metabolism process of the natu...

Full description

Bibliographic Details
Main Authors: Wen Zhang, Xiaohui Ren, Liyin Bao
Format: Article
Language:English
Published: Instituto de Tecnologia do Paraná (Tecpar) 2018-11-01
Series:Brazilian Archives of Biology and Technology
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132018000100201&lng=en&tlng=en
Description
Summary:ABSTRACT Alginate is a major component of brown algae, but it cannot be utilized for ethanol fermentation by industrial microorganisms. A natural alginate degrading and ethanol producing strain was obtained in our previous research. However, the research on the ethanol metabolism process of the natural alginate fermentation strain is lacked. In this research, the key enzyme and metabolic process of ethanol fermentation were studied. Three kinds of key enzyme including alginate lyase, pyruvate dehydrogenase and ethanol dehydrogenase were determined. The enzyme activity in the metabolic process was relatively high at 60-96 h which was the most important period during the fermentation. Meanwhile the concentration change of the important substances including soluble sugar, reducing sugar, acidity, pyruvic acid and ethanol were tracked and analyzed. Total soluble sugar and reducing sugar change tendency during the fermentation was similar. In the whole fermentation process, the fermentation broth was acidic. The value of pyruvic acid content reached highest at 72 h. During 48-96 h, the growth of ethanol concentration was very obvious. The alginate metabolic process in natural alginate fermentation strain was to generate extracellular alginate lyase to degrade alginate to produce reducing sugar, and then some intermediate metabolites formed such as pyruvic acid. Finally under the effect of pyruvate dehydrogenase and ethanol dehydrogenase, ethanol was produced.
ISSN:1678-4324