A Remark of an Interpolatory Operator(关于一个插值算子的注)

本文证明了插值算子当α>3时可达到Timan型逼近阶及1≤α≤2的最优阶.

Bibliographic Details
Main Authors: ZHANGRen-jiang(章仁江), WANGZhi-jiang(王志江)
Format: Article
Language:zho
Published: Zhejiang University Press 1999-11-01
Series:Zhejiang Daxue xuebao. Lixue ban
Subjects:
Online Access:https://doi.org/zjup/1008-9497.1999.26.2.25-27
_version_ 1797236556944113664
author ZHANGRen-jiang(章仁江)
WANGZhi-jiang(王志江)
author_facet ZHANGRen-jiang(章仁江)
WANGZhi-jiang(王志江)
author_sort ZHANGRen-jiang(章仁江)
collection DOAJ
description 本文证明了插值算子当α>3时可达到Timan型逼近阶及1≤α≤2的最优阶.
first_indexed 2024-04-24T17:05:44Z
format Article
id doaj.art-238d3f532bad4816bcf878a6a077e108
institution Directory Open Access Journal
issn 1008-9497
language zho
last_indexed 2024-04-24T17:05:44Z
publishDate 1999-11-01
publisher Zhejiang University Press
record_format Article
series Zhejiang Daxue xuebao. Lixue ban
spelling doaj.art-238d3f532bad4816bcf878a6a077e1082024-03-29T01:58:15ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94971999-11-012622527zjup/1008-9497.1999.26.2.25-27A Remark of an Interpolatory Operator(关于一个插值算子的注)ZHANGRen-jiang(章仁江)0WANGZhi-jiang(王志江)1China Institute of Metrology, Hangzhou 310034, China(中国计量学院,浙江 杭州 310034)China Institute of Metrology, Hangzhou 310034, China(中国计量学院,浙江 杭州 310034)本文证明了插值算子当α>3时可达到Timan型逼近阶及1≤α≤2的最优阶.https://doi.org/zjup/1008-9497.1999.26.2.25-27插值算子连续模
spellingShingle ZHANGRen-jiang(章仁江)
WANGZhi-jiang(王志江)
A Remark of an Interpolatory Operator(关于一个插值算子的注)
Zhejiang Daxue xuebao. Lixue ban
插值算子
连续模
title A Remark of an Interpolatory Operator(关于一个插值算子的注)
title_full A Remark of an Interpolatory Operator(关于一个插值算子的注)
title_fullStr A Remark of an Interpolatory Operator(关于一个插值算子的注)
title_full_unstemmed A Remark of an Interpolatory Operator(关于一个插值算子的注)
title_short A Remark of an Interpolatory Operator(关于一个插值算子的注)
title_sort remark of an interpolatory operator 关于一个插值算子的注
topic 插值算子
连续模
url https://doi.org/zjup/1008-9497.1999.26.2.25-27
work_keys_str_mv AT zhangrenjiangzhāngrénjiāng aremarkofaninterpolatoryoperatorguānyúyīgèchāzhísuànzidezhù
AT wangzhijiangwángzhìjiāng aremarkofaninterpolatoryoperatorguānyúyīgèchāzhísuànzidezhù
AT zhangrenjiangzhāngrénjiāng remarkofaninterpolatoryoperatorguānyúyīgèchāzhísuànzidezhù
AT wangzhijiangwángzhìjiāng remarkofaninterpolatoryoperatorguānyúyīgèchāzhísuànzidezhù