Numerical Study on Effects of Geometric Parameters on the Release Characteristics of Straight Sudden Expansion Gas Extinguishing Nozzles

In order to guide the optimization design of the nozzle of the aircraft-fixed gas fire extinguishing system, we studied the influence of nozzle geometric parameters including outlet–inlet area ratio, length–diameter aspect ratio, and wall roughness on the distribution of pressure and velocity in the...

Full description

Bibliographic Details
Main Authors: Quanwei Li, Xiaohua He, Yongbing Chen, Jiang Lin, Yi Zhang, Ruiyu Chen, Xia Zhou
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/12/2440
_version_ 1797500283684651008
author Quanwei Li
Xiaohua He
Yongbing Chen
Jiang Lin
Yi Zhang
Ruiyu Chen
Xia Zhou
author_facet Quanwei Li
Xiaohua He
Yongbing Chen
Jiang Lin
Yi Zhang
Ruiyu Chen
Xia Zhou
author_sort Quanwei Li
collection DOAJ
description In order to guide the optimization design of the nozzle of the aircraft-fixed gas fire extinguishing system, we studied the influence of nozzle geometric parameters including outlet–inlet area ratio, length–diameter aspect ratio, and wall roughness on the distribution of pressure and velocity in the nozzle on the basis of CFD simulations. Although the structure of the nozzle is axisymmetric, the spatial distribution of the pressure and velocity during the flow and release of gas extinguishing agent is not completely symmetric. It was found that both of the outlet–inlet area ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">δ</mi></semantics></math></inline-formula>) and the length–diameter aspect ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula>) had a significant impact on the distribution characteristics of the pressure and axial velocity in the nozzle. With the increase of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">δ</mi></semantics></math></inline-formula>, the average pressure at the outlet cross-section of the nozzle decreased monotonically, while the average axial velocity at the outlet increased approximately linearly. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ξ</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, the uniformity of the pressure and velocity distribution at the nozzle outlet was significantly improved. Moreover, with the increase of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula>, the average pressure and the average axial velocity of the outlet both showed a non-monotonic change trend, and the optimal value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> should be about 3.0. Compared with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">δ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula>, the influence of the nozzle wall roughness (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ε</mi><mi>N</mi></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> on the flow and release characteristics of the extinguishing agent was weak. With the increase of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ε</mi><mi>N</mi></msub></mrow></semantics></math></inline-formula>, the average pressure of the nozzle outlet increased slightly, while the average axial velocity at the nozzle outlet decreased slightly.
first_indexed 2024-03-10T03:59:41Z
format Article
id doaj.art-2391b66ce2374d39a112dca05f85e536
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T03:59:41Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-2391b66ce2374d39a112dca05f85e5362023-11-23T10:47:16ZengMDPI AGSymmetry2073-89942021-12-011312244010.3390/sym13122440Numerical Study on Effects of Geometric Parameters on the Release Characteristics of Straight Sudden Expansion Gas Extinguishing NozzlesQuanwei Li0Xiaohua He1Yongbing Chen2Jiang Lin3Yi Zhang4Ruiyu Chen5Xia Zhou6School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, ChinaShanghai Space Propulsion Technology Research Institute, Huzhou 313000, ChinaShanghai Space Propulsion Technology Research Institute, Huzhou 313000, ChinaSchool of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, ChinaSchool of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, ChinaSchool of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, ChinaSchool of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, ChinaIn order to guide the optimization design of the nozzle of the aircraft-fixed gas fire extinguishing system, we studied the influence of nozzle geometric parameters including outlet–inlet area ratio, length–diameter aspect ratio, and wall roughness on the distribution of pressure and velocity in the nozzle on the basis of CFD simulations. Although the structure of the nozzle is axisymmetric, the spatial distribution of the pressure and velocity during the flow and release of gas extinguishing agent is not completely symmetric. It was found that both of the outlet–inlet area ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">δ</mi></semantics></math></inline-formula>) and the length–diameter aspect ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula>) had a significant impact on the distribution characteristics of the pressure and axial velocity in the nozzle. With the increase of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">δ</mi></semantics></math></inline-formula>, the average pressure at the outlet cross-section of the nozzle decreased monotonically, while the average axial velocity at the outlet increased approximately linearly. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ξ</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, the uniformity of the pressure and velocity distribution at the nozzle outlet was significantly improved. Moreover, with the increase of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula>, the average pressure and the average axial velocity of the outlet both showed a non-monotonic change trend, and the optimal value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> should be about 3.0. Compared with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">δ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula>, the influence of the nozzle wall roughness (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ε</mi><mi>N</mi></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> on the flow and release characteristics of the extinguishing agent was weak. With the increase of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ε</mi><mi>N</mi></msub></mrow></semantics></math></inline-formula>, the average pressure of the nozzle outlet increased slightly, while the average axial velocity at the nozzle outlet decreased slightly.https://www.mdpi.com/2073-8994/13/12/2440aircraft fire extinguishing systemstraight sudden expansion nozzlegas–liquid two-phase flowgas extinguishing agentpressure and velocity distribution
spellingShingle Quanwei Li
Xiaohua He
Yongbing Chen
Jiang Lin
Yi Zhang
Ruiyu Chen
Xia Zhou
Numerical Study on Effects of Geometric Parameters on the Release Characteristics of Straight Sudden Expansion Gas Extinguishing Nozzles
Symmetry
aircraft fire extinguishing system
straight sudden expansion nozzle
gas–liquid two-phase flow
gas extinguishing agent
pressure and velocity distribution
title Numerical Study on Effects of Geometric Parameters on the Release Characteristics of Straight Sudden Expansion Gas Extinguishing Nozzles
title_full Numerical Study on Effects of Geometric Parameters on the Release Characteristics of Straight Sudden Expansion Gas Extinguishing Nozzles
title_fullStr Numerical Study on Effects of Geometric Parameters on the Release Characteristics of Straight Sudden Expansion Gas Extinguishing Nozzles
title_full_unstemmed Numerical Study on Effects of Geometric Parameters on the Release Characteristics of Straight Sudden Expansion Gas Extinguishing Nozzles
title_short Numerical Study on Effects of Geometric Parameters on the Release Characteristics of Straight Sudden Expansion Gas Extinguishing Nozzles
title_sort numerical study on effects of geometric parameters on the release characteristics of straight sudden expansion gas extinguishing nozzles
topic aircraft fire extinguishing system
straight sudden expansion nozzle
gas–liquid two-phase flow
gas extinguishing agent
pressure and velocity distribution
url https://www.mdpi.com/2073-8994/13/12/2440
work_keys_str_mv AT quanweili numericalstudyoneffectsofgeometricparametersonthereleasecharacteristicsofstraightsuddenexpansiongasextinguishingnozzles
AT xiaohuahe numericalstudyoneffectsofgeometricparametersonthereleasecharacteristicsofstraightsuddenexpansiongasextinguishingnozzles
AT yongbingchen numericalstudyoneffectsofgeometricparametersonthereleasecharacteristicsofstraightsuddenexpansiongasextinguishingnozzles
AT jianglin numericalstudyoneffectsofgeometricparametersonthereleasecharacteristicsofstraightsuddenexpansiongasextinguishingnozzles
AT yizhang numericalstudyoneffectsofgeometricparametersonthereleasecharacteristicsofstraightsuddenexpansiongasextinguishingnozzles
AT ruiyuchen numericalstudyoneffectsofgeometricparametersonthereleasecharacteristicsofstraightsuddenexpansiongasextinguishingnozzles
AT xiazhou numericalstudyoneffectsofgeometricparametersonthereleasecharacteristicsofstraightsuddenexpansiongasextinguishingnozzles