Summary: | Yasutaka Tashiro,1 Ken Okazaki,1 Munenori Uemura,2 Kazutaka Toyoda,2 Kanji Osaki,1 Hirokazu Matsubara,1 Makoto Hashizume,2 Yukihide Iwamoto1 1Department of Orthopaedic Surgery, 2Department of Advanced Medical Initiatives, Kyushu University Hospital, Fukuoka, Japan Purpose: The purpose of this study was to assess the differences in bone tunnel apertures between the trans-accessory medial portal (trans-AMP) technique and the transtibial (TT) technique in double-bundle anterior cruciate ligament reconstruction. The extent of ovalization and the frequency of overlap of the two tunnel apertures were compared. Methods: The simulation of femoral tunnel drilling with the TT and the trans-AMP techniques was performed using three-dimensional computer aided design models from two volunteers. The incidence angle of drilling against the intercondylar wall, the femoral tunnel position, the ovalization, and the overlap were analyzed. The aperture and location of the tunnels were also examined in real anterior cruciate ligament reconstruction cases (n=36). Results: The surgical simulation showed that a lower drill incident angle induced by the TT technique made the apertures of two tunnels more ovalized, located anteromedial tunnels in a shallower position to prevent posterior wall blow out, and led to a higher frequency of tunnel overlap. The trans-AMP group had tunnel places within the footprint and had less ovalization and overlap. The results of analysis for tunnels in the clinical cases were consistent with results from the surgical simulation. Conclusion: In the TT technique, the shallow anteromedial tunnel location and more ovalized tunnel aperture can lead to a higher frequency of tunnel overlap. Compared with the TT technique, the trans-AMP technique was more useful in preparing femoral tunnels anatomically and avoiding tunnel ovalization and overlapping in double-bundle anterior cruciate ligament reconstruction. Keywords: anterior cruciate ligament, transtibial, transaccessory medial portal, computer aided design, surgical simulation, tunnel aperture
|