Characterization of the Infant Immune System and the Influence and Immunogenicity of BCG Vaccination in Infant and Adult Rhesus Macaques

In many countries where tuberculosis (TB) is endemic, the Bacillus Calmette–Guérin (BCG) vaccine is given as close to birth as possible to protect infants and children from severe forms of TB. However, BCG has variable efficacy and is not as effective against adult pulmonary TB. At present, most ani...

Full description

Bibliographic Details
Main Authors: Charlotte Sarfas, Andrew D. White, Laura Sibley, Alexandra L. Morrison, Jennie Gullick, Steve Lawrence, Mike J. Dennis, Philip D. Marsh, Helen A. Fletcher, Sally A. Sharpe
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-10-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2021.754589/full
_version_ 1818404343707074560
author Charlotte Sarfas
Andrew D. White
Laura Sibley
Alexandra L. Morrison
Jennie Gullick
Steve Lawrence
Mike J. Dennis
Philip D. Marsh
Helen A. Fletcher
Sally A. Sharpe
author_facet Charlotte Sarfas
Andrew D. White
Laura Sibley
Alexandra L. Morrison
Jennie Gullick
Steve Lawrence
Mike J. Dennis
Philip D. Marsh
Helen A. Fletcher
Sally A. Sharpe
author_sort Charlotte Sarfas
collection DOAJ
description In many countries where tuberculosis (TB) is endemic, the Bacillus Calmette–Guérin (BCG) vaccine is given as close to birth as possible to protect infants and children from severe forms of TB. However, BCG has variable efficacy and is not as effective against adult pulmonary TB. At present, most animal models used to study novel TB vaccine candidates rely on the use of adult animals. Human studies show that the infant immune system is different to that of an adult. Understanding how the phenotypic profile and functional ability of the immature host immune system compares to that of a mature adult, together with the subsequent BCG immune response, is critical to ensuring that new TB vaccines are tested in the most appropriate models. BCG-specific immune responses were detected in macaques vaccinated within a week of birth from six weeks after immunization indicating that neonatal macaques are able to generate a functional cellular response to the vaccine. However, the responses measured were significantly lower than those typically observed following BCG vaccination in adult rhesus macaques and infant profiles were skewed towards the activation and attraction of macrophages and monocytes and the synthesis in addition to release of pro-inflammatory cytokines such as IL-1, IL-6 and TNF-α. The frequency of specific immune cell populations changed significantly through the first three years of life as the infants developed into young adult macaques. Notably, the CD4:CD8 ratio significantly declined as the macaques aged due to a significant decrease in the proportion of CD4+ T-cells relative to a significant increase in CD8+ T-cells. Also, the frequency of both CD4+ and CD8+ T-cells expressing the memory marker CD95, and memory subset populations including effector memory, central memory and stem cell memory, increased significantly as animals matured. Infant macaques, vaccinated with BCG within a week of birth, possessed a significantly higher frequency of CD14+ classical monocytes and granulocytes which remained different throughout the first three years of life compared to unvaccinated age matched animals. These findings, along with the increase in monokines following vaccination in infants, may provide an insight into the mechanism by which vaccination with BCG is able to provide non-specific immunity against non-mycobacterial organisms.
first_indexed 2024-12-14T08:38:39Z
format Article
id doaj.art-23a524431d8548a983dc1bcc98994a67
institution Directory Open Access Journal
issn 1664-3224
language English
last_indexed 2024-12-14T08:38:39Z
publishDate 2021-10-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Immunology
spelling doaj.art-23a524431d8548a983dc1bcc98994a672022-12-21T23:09:20ZengFrontiers Media S.A.Frontiers in Immunology1664-32242021-10-011210.3389/fimmu.2021.754589754589Characterization of the Infant Immune System and the Influence and Immunogenicity of BCG Vaccination in Infant and Adult Rhesus MacaquesCharlotte Sarfas0Andrew D. White1Laura Sibley2Alexandra L. Morrison3Jennie Gullick4Steve Lawrence5Mike J. Dennis6Philip D. Marsh7Helen A. Fletcher8Sally A. Sharpe9National Infection Service, UK Health Security Agency, Salisbury, United KingdomNational Infection Service, UK Health Security Agency, Salisbury, United KingdomNational Infection Service, UK Health Security Agency, Salisbury, United KingdomNational Infection Service, UK Health Security Agency, Salisbury, United KingdomNational Infection Service, UK Health Security Agency, Salisbury, United KingdomNational Infection Service, UK Health Security Agency, Salisbury, United KingdomNational Infection Service, UK Health Security Agency, Salisbury, United KingdomNational Infection Service, UK Health Security Agency, Salisbury, United KingdomDepartment of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United KingdomNational Infection Service, UK Health Security Agency, Salisbury, United KingdomIn many countries where tuberculosis (TB) is endemic, the Bacillus Calmette–Guérin (BCG) vaccine is given as close to birth as possible to protect infants and children from severe forms of TB. However, BCG has variable efficacy and is not as effective against adult pulmonary TB. At present, most animal models used to study novel TB vaccine candidates rely on the use of adult animals. Human studies show that the infant immune system is different to that of an adult. Understanding how the phenotypic profile and functional ability of the immature host immune system compares to that of a mature adult, together with the subsequent BCG immune response, is critical to ensuring that new TB vaccines are tested in the most appropriate models. BCG-specific immune responses were detected in macaques vaccinated within a week of birth from six weeks after immunization indicating that neonatal macaques are able to generate a functional cellular response to the vaccine. However, the responses measured were significantly lower than those typically observed following BCG vaccination in adult rhesus macaques and infant profiles were skewed towards the activation and attraction of macrophages and monocytes and the synthesis in addition to release of pro-inflammatory cytokines such as IL-1, IL-6 and TNF-α. The frequency of specific immune cell populations changed significantly through the first three years of life as the infants developed into young adult macaques. Notably, the CD4:CD8 ratio significantly declined as the macaques aged due to a significant decrease in the proportion of CD4+ T-cells relative to a significant increase in CD8+ T-cells. Also, the frequency of both CD4+ and CD8+ T-cells expressing the memory marker CD95, and memory subset populations including effector memory, central memory and stem cell memory, increased significantly as animals matured. Infant macaques, vaccinated with BCG within a week of birth, possessed a significantly higher frequency of CD14+ classical monocytes and granulocytes which remained different throughout the first three years of life compared to unvaccinated age matched animals. These findings, along with the increase in monokines following vaccination in infants, may provide an insight into the mechanism by which vaccination with BCG is able to provide non-specific immunity against non-mycobacterial organisms.https://www.frontiersin.org/articles/10.3389/fimmu.2021.754589/fullBCGinfantimmunologymacaqueinfant vaccinationage comparison
spellingShingle Charlotte Sarfas
Andrew D. White
Laura Sibley
Alexandra L. Morrison
Jennie Gullick
Steve Lawrence
Mike J. Dennis
Philip D. Marsh
Helen A. Fletcher
Sally A. Sharpe
Characterization of the Infant Immune System and the Influence and Immunogenicity of BCG Vaccination in Infant and Adult Rhesus Macaques
Frontiers in Immunology
BCG
infant
immunology
macaque
infant vaccination
age comparison
title Characterization of the Infant Immune System and the Influence and Immunogenicity of BCG Vaccination in Infant and Adult Rhesus Macaques
title_full Characterization of the Infant Immune System and the Influence and Immunogenicity of BCG Vaccination in Infant and Adult Rhesus Macaques
title_fullStr Characterization of the Infant Immune System and the Influence and Immunogenicity of BCG Vaccination in Infant and Adult Rhesus Macaques
title_full_unstemmed Characterization of the Infant Immune System and the Influence and Immunogenicity of BCG Vaccination in Infant and Adult Rhesus Macaques
title_short Characterization of the Infant Immune System and the Influence and Immunogenicity of BCG Vaccination in Infant and Adult Rhesus Macaques
title_sort characterization of the infant immune system and the influence and immunogenicity of bcg vaccination in infant and adult rhesus macaques
topic BCG
infant
immunology
macaque
infant vaccination
age comparison
url https://www.frontiersin.org/articles/10.3389/fimmu.2021.754589/full
work_keys_str_mv AT charlottesarfas characterizationoftheinfantimmunesystemandtheinfluenceandimmunogenicityofbcgvaccinationininfantandadultrhesusmacaques
AT andrewdwhite characterizationoftheinfantimmunesystemandtheinfluenceandimmunogenicityofbcgvaccinationininfantandadultrhesusmacaques
AT laurasibley characterizationoftheinfantimmunesystemandtheinfluenceandimmunogenicityofbcgvaccinationininfantandadultrhesusmacaques
AT alexandralmorrison characterizationoftheinfantimmunesystemandtheinfluenceandimmunogenicityofbcgvaccinationininfantandadultrhesusmacaques
AT jenniegullick characterizationoftheinfantimmunesystemandtheinfluenceandimmunogenicityofbcgvaccinationininfantandadultrhesusmacaques
AT stevelawrence characterizationoftheinfantimmunesystemandtheinfluenceandimmunogenicityofbcgvaccinationininfantandadultrhesusmacaques
AT mikejdennis characterizationoftheinfantimmunesystemandtheinfluenceandimmunogenicityofbcgvaccinationininfantandadultrhesusmacaques
AT philipdmarsh characterizationoftheinfantimmunesystemandtheinfluenceandimmunogenicityofbcgvaccinationininfantandadultrhesusmacaques
AT helenafletcher characterizationoftheinfantimmunesystemandtheinfluenceandimmunogenicityofbcgvaccinationininfantandadultrhesusmacaques
AT sallyasharpe characterizationoftheinfantimmunesystemandtheinfluenceandimmunogenicityofbcgvaccinationininfantandadultrhesusmacaques