Can in vitro embryo production be estimated from semen variables in Senepol breed by using artificial intelligence?

Thoroughly analyzing the sperm and exploring the information obtained using artificial intelligence (AI) could be the key to improving fertility estimation. Artificial neural networks have already been applied to calculate zootechnical indices in animals and predict fertility in humans. This method...

Full description

Bibliographic Details
Main Authors: Suzane Peres Campanholi, Sebastião Garcia Neto, Gabriel Martins Pinheiro, Marcelo Fábio Gouveia Nogueira, José Celso Rocha, João Diego de Agostini Losano, Adriano Felipe Perez Siqueira, Marcílio Nichi, Mayra Elena Ortiz D'Avila Assumpção, Andréa Cristina Basso, Fabio Morato Monteiro, Lindsay Unno Gimenes
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-09-01
Series:Frontiers in Veterinary Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fvets.2023.1254940/full
_version_ 1797678673654972416
author Suzane Peres Campanholi
Sebastião Garcia Neto
Gabriel Martins Pinheiro
Marcelo Fábio Gouveia Nogueira
José Celso Rocha
João Diego de Agostini Losano
Adriano Felipe Perez Siqueira
Marcílio Nichi
Mayra Elena Ortiz D'Avila Assumpção
Andréa Cristina Basso
Fabio Morato Monteiro
Lindsay Unno Gimenes
author_facet Suzane Peres Campanholi
Sebastião Garcia Neto
Gabriel Martins Pinheiro
Marcelo Fábio Gouveia Nogueira
José Celso Rocha
João Diego de Agostini Losano
Adriano Felipe Perez Siqueira
Marcílio Nichi
Mayra Elena Ortiz D'Avila Assumpção
Andréa Cristina Basso
Fabio Morato Monteiro
Lindsay Unno Gimenes
author_sort Suzane Peres Campanholi
collection DOAJ
description Thoroughly analyzing the sperm and exploring the information obtained using artificial intelligence (AI) could be the key to improving fertility estimation. Artificial neural networks have already been applied to calculate zootechnical indices in animals and predict fertility in humans. This method of estimating the results of reproductive biotechnologies, such as in vitro embryo production (IVEP) in cattle, could be valuable for livestock production. This study was developed to model IVEP estimates in Senepol animals based on various sperm attributes, through retrospective data from 290 IVEP routines performed using 38 commercial doses of semen from Senepol bulls. All sperm samples that had undergone the same procedure during sperm selection for in vitro fertilization were evaluated using a computer-assisted sperm analysis (CASA) system to define sperm subpopulations. Sperm morphology was also analyzed in a wet preparation, and the integrity of the plasma and acrosomal membranes, mitochondrial potential, oxidative status, and chromatin resistance were evaluated using flow cytometry. A previous study identified three sperm subpopulations in such samples and the information used in tandem with other sperm quality variables to perform an AI analysis. AI analysis generated models that estimated IVEP based on the season, donor, percentage of viable oocytes, and 18 other sperm predictor variables. The accuracy of the results obtained for the three best AI models for predicting the IVEP was 90.7, 75.3, and 79.6%, respectively. Therefore, applying this AI technique would enable the estimation of high or low embryo production for individual bulls based on the sperm analysis information.
first_indexed 2024-03-11T23:03:20Z
format Article
id doaj.art-23b373d03aaf47bc9606ed8eada66491
institution Directory Open Access Journal
issn 2297-1769
language English
last_indexed 2024-03-11T23:03:20Z
publishDate 2023-09-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Veterinary Science
spelling doaj.art-23b373d03aaf47bc9606ed8eada664912023-09-21T14:02:02ZengFrontiers Media S.A.Frontiers in Veterinary Science2297-17692023-09-011010.3389/fvets.2023.12549401254940Can in vitro embryo production be estimated from semen variables in Senepol breed by using artificial intelligence?Suzane Peres Campanholi0Sebastião Garcia Neto1Gabriel Martins Pinheiro2Marcelo Fábio Gouveia Nogueira3José Celso Rocha4João Diego de Agostini Losano5Adriano Felipe Perez Siqueira6Marcílio Nichi7Mayra Elena Ortiz D'Avila Assumpção8Andréa Cristina Basso9Fabio Morato Monteiro10Lindsay Unno Gimenes11Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista, Jaboticabal, BrazilSenepol 3G, Barretos, BrazilDepartamento de Ciências Biológicas, Faculdade de Ciências e Letras (FCLA), Universidade Estadual Paulista (UNESP), Assis, BrazilDepartamento de Ciências Biológicas, Faculdade de Ciências e Letras (FCLA), Universidade Estadual Paulista (UNESP), Assis, BrazilDepartamento de Ciências Biológicas, Faculdade de Ciências e Letras (FCLA), Universidade Estadual Paulista (UNESP), Assis, BrazilDepartamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, BrazilDepartamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, BrazilDepartamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, BrazilDepartamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, BrazilIn Vitro Brasil SA, Mogi Mirim, BrazilCentro Avançado de Pesquisa de Bovinos de Corte, Agência Paulista de Tecnologia dos Agronegócios/Instituto de Zootecnia (APTA/IZ), Sertãozinho, BrazilDepartamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista, Jaboticabal, BrazilThoroughly analyzing the sperm and exploring the information obtained using artificial intelligence (AI) could be the key to improving fertility estimation. Artificial neural networks have already been applied to calculate zootechnical indices in animals and predict fertility in humans. This method of estimating the results of reproductive biotechnologies, such as in vitro embryo production (IVEP) in cattle, could be valuable for livestock production. This study was developed to model IVEP estimates in Senepol animals based on various sperm attributes, through retrospective data from 290 IVEP routines performed using 38 commercial doses of semen from Senepol bulls. All sperm samples that had undergone the same procedure during sperm selection for in vitro fertilization were evaluated using a computer-assisted sperm analysis (CASA) system to define sperm subpopulations. Sperm morphology was also analyzed in a wet preparation, and the integrity of the plasma and acrosomal membranes, mitochondrial potential, oxidative status, and chromatin resistance were evaluated using flow cytometry. A previous study identified three sperm subpopulations in such samples and the information used in tandem with other sperm quality variables to perform an AI analysis. AI analysis generated models that estimated IVEP based on the season, donor, percentage of viable oocytes, and 18 other sperm predictor variables. The accuracy of the results obtained for the three best AI models for predicting the IVEP was 90.7, 75.3, and 79.6%, respectively. Therefore, applying this AI technique would enable the estimation of high or low embryo production for individual bulls based on the sperm analysis information.https://www.frontiersin.org/articles/10.3389/fvets.2023.1254940/fullbovinesperm kineticsartificial intelligencefertilityIVEP
spellingShingle Suzane Peres Campanholi
Sebastião Garcia Neto
Gabriel Martins Pinheiro
Marcelo Fábio Gouveia Nogueira
José Celso Rocha
João Diego de Agostini Losano
Adriano Felipe Perez Siqueira
Marcílio Nichi
Mayra Elena Ortiz D'Avila Assumpção
Andréa Cristina Basso
Fabio Morato Monteiro
Lindsay Unno Gimenes
Can in vitro embryo production be estimated from semen variables in Senepol breed by using artificial intelligence?
Frontiers in Veterinary Science
bovine
sperm kinetics
artificial intelligence
fertility
IVEP
title Can in vitro embryo production be estimated from semen variables in Senepol breed by using artificial intelligence?
title_full Can in vitro embryo production be estimated from semen variables in Senepol breed by using artificial intelligence?
title_fullStr Can in vitro embryo production be estimated from semen variables in Senepol breed by using artificial intelligence?
title_full_unstemmed Can in vitro embryo production be estimated from semen variables in Senepol breed by using artificial intelligence?
title_short Can in vitro embryo production be estimated from semen variables in Senepol breed by using artificial intelligence?
title_sort can in vitro embryo production be estimated from semen variables in senepol breed by using artificial intelligence
topic bovine
sperm kinetics
artificial intelligence
fertility
IVEP
url https://www.frontiersin.org/articles/10.3389/fvets.2023.1254940/full
work_keys_str_mv AT suzaneperescampanholi caninvitroembryoproductionbeestimatedfromsemenvariablesinsenepolbreedbyusingartificialintelligence
AT sebastiaogarcianeto caninvitroembryoproductionbeestimatedfromsemenvariablesinsenepolbreedbyusingartificialintelligence
AT gabrielmartinspinheiro caninvitroembryoproductionbeestimatedfromsemenvariablesinsenepolbreedbyusingartificialintelligence
AT marcelofabiogouveianogueira caninvitroembryoproductionbeestimatedfromsemenvariablesinsenepolbreedbyusingartificialintelligence
AT josecelsorocha caninvitroembryoproductionbeestimatedfromsemenvariablesinsenepolbreedbyusingartificialintelligence
AT joaodiegodeagostinilosano caninvitroembryoproductionbeestimatedfromsemenvariablesinsenepolbreedbyusingartificialintelligence
AT adrianofelipeperezsiqueira caninvitroembryoproductionbeestimatedfromsemenvariablesinsenepolbreedbyusingartificialintelligence
AT marcilionichi caninvitroembryoproductionbeestimatedfromsemenvariablesinsenepolbreedbyusingartificialintelligence
AT mayraelenaortizdavilaassumpcao caninvitroembryoproductionbeestimatedfromsemenvariablesinsenepolbreedbyusingartificialintelligence
AT andreacristinabasso caninvitroembryoproductionbeestimatedfromsemenvariablesinsenepolbreedbyusingartificialintelligence
AT fabiomoratomonteiro caninvitroembryoproductionbeestimatedfromsemenvariablesinsenepolbreedbyusingartificialintelligence
AT lindsayunnogimenes caninvitroembryoproductionbeestimatedfromsemenvariablesinsenepolbreedbyusingartificialintelligence