An Efficient Analytical Technique, for The Solution of Fractional-Order Telegraph Equations

In the present article, fractional-order telegraph equations are solved by using the Laplace-Adomian decomposition method. The Caputo operator is used to define the fractional derivative. Series form solutions are obtained for fractional-order telegraph equations by using the proposed method. Some n...

Full description

Bibliographic Details
Main Authors: Hassan Khan, Rasool Shah, Poom kumam, Dumitru Baleanu, Muhammad Arif
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/5/426
Description
Summary:In the present article, fractional-order telegraph equations are solved by using the Laplace-Adomian decomposition method. The Caputo operator is used to define the fractional derivative. Series form solutions are obtained for fractional-order telegraph equations by using the proposed method. Some numerical examples are presented to understand the procedure of the Laplace-Adomian decomposition method. As the Laplace-Adomian decomposition procedure has shown the least volume of calculations and high rate of convergence compared to other analytical techniques, the Laplace-Adomian decomposition method is considered to be one of the best analytical techniques for solving fractional-order, non-linear partial differential equations—particularly the fractional-order telegraph equation.
ISSN:2227-7390