Summary: | Precise urban façade color is the foundation of urban color planning. Nevertheless, existing research on urban colors usually relies on manual sampling due to technical limitations, which brings challenges for evaluating urban façade color with the co-existence of city-scale and fine-grained resolution. In this study, we propose a deep learning-based approach for mapping the urban façade color using street-view imagery. The dominant color of the urban façade (DCUF) is adopted as an indicator to describe the urban façade color. A case study in Shenzhen was conducted to measure the urban façade color using Baidu Street View (BSV) panoramas, with city-scale mapping of the urban façade color in both irregular geographical units and regular grids. Shenzhen’s urban façade color has a gray tone with low chroma. The results demonstrate that the proposed method has a high level of accuracy for the extraction of the urban façade color. In short, this study contributes to the development of urban color planning by efficiently analyzing the urban façade color with higher levels of validity across city-scale areas. Insights into the mapping of the urban façade color from the humanistic perspective could facilitate higher quality urban space planning and design.
|