Prediction of tuberculosis using an automated machine learning platform for models trained on synthetic data

High-quality medical data is critical to the development and implementation of machine learning (ML) algorithms in healthcare; however, security, and privacy concerns continue to limit access. We sought to determine the utility of “synthetic data” in training ML algorithms for the detection of tuber...

Full description

Bibliographic Details
Main Authors: Hooman H. Rashidi, Imran H. Khan, Luke T. Dang, Samer Albahra, Ujjwal Ratan, Nihir Chadderwala, Wilson To, Prathima Srinivas, Jeffery Wajda, Nam K. Tran
Format: Article
Language:English
Published: Elsevier 2022-01-01
Series:Journal of Pathology Informatics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2153353922007660
Description
Summary:High-quality medical data is critical to the development and implementation of machine learning (ML) algorithms in healthcare; however, security, and privacy concerns continue to limit access. We sought to determine the utility of “synthetic data” in training ML algorithms for the detection of tuberculosis (TB) from inflammatory biomarker profiles. A retrospective dataset (A) comprised of 278 patients was used to generate synthetic datasets (B, C, and D) for training models prior to secondary validation on a generalization dataset. ML models trained and validated on the Dataset A (real) demonstrated an accuracy of 90%, a sensitivity of 89% (95% CI, 83–94%), and a specificity of 100% (95% CI, 81–100%). Models trained using the optimal synthetic dataset B showed an accuracy of 91%, a sensitivity of 93% (95% CI, 87–96%), and a specificity of 77% (95% CI, 50–93%). Synthetic datasets C and D displayed diminished performance measures (respective accuracies of 71% and 54%). This pilot study highlights the promise of synthetic data as an expedited means for ML algorithm development.
ISSN:2153-3539