Photo-physical characterization of fluorophore Ru(bpy)32+ for optical biosensing applications

We studied absorption, emission and lifetime of the coordination compound tris(2,2′-bipyridyl)ruthenium(II) fluorophore (Ru(bpy)32+) both dissolved in water solutions and dried. Lifetime measurements were carried out using a new detector, the Silicon Photomultiplier (SiPM), which is more sensitive a...

Full description

Bibliographic Details
Main Authors: E.L. Sciuto, M.F. Santangelo, G. Villaggio, F. Sinatra, C. Bongiorno, G. Nicotra, S. Libertino
Format: Article
Language:English
Published: Elsevier 2015-12-01
Series:Sensing and Bio-Sensing Research
Online Access:http://www.sciencedirect.com/science/article/pii/S2214180415300179
Description
Summary:We studied absorption, emission and lifetime of the coordination compound tris(2,2′-bipyridyl)ruthenium(II) fluorophore (Ru(bpy)32+) both dissolved in water solutions and dried. Lifetime measurements were carried out using a new detector, the Silicon Photomultiplier (SiPM), which is more sensitive and physically much smaller than conventional optical detectors, such as imager and scanner. Through these analyses and a morphological characterization with transmission electron microscopy, revealed its usability for sensor applications, in particular, as dye in optical DNA-chip technology, a viable alternative to the conventional CY5 fluorophore. The use of Ru(bpy)32+ would solve some of the typical disadvantages related to Cy5’s application, such as self-absorption of fluorescence and photobleaching. In addition, the Ru(bpy)32+ longer lifetime may play a key role in the definition of new optical DNA-chip. Keywords: Tris(2,2′-bipyridyl)ruthenium(II), Fluorophore, Spectroscopy, Lifetime measurements, SiPM, TEM
ISSN:2214-1804