Chaos synchronization of a fractional nonautonomous system
In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we sy...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2014-01-01
|
Series: | Nonautonomous Dynamical Systems |
Subjects: | |
Online Access: | http://www.degruyter.com/view/j/msds.2014.1.issue-1/msds-2014-0001/msds-2014-0001.xml?format=INT |
_version_ | 1818414455542775808 |
---|---|
author | Hammouch Zakia Mekkaoui Toufik |
author_facet | Hammouch Zakia Mekkaoui Toufik |
author_sort | Hammouch Zakia |
collection | DOAJ |
description | In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the efiectiveness of the proposed methods |
first_indexed | 2024-12-14T11:19:22Z |
format | Article |
id | doaj.art-23e4f6cfdca54d23afc4fd844abd9011 |
institution | Directory Open Access Journal |
issn | 2353-0626 |
language | English |
last_indexed | 2024-12-14T11:19:22Z |
publishDate | 2014-01-01 |
publisher | De Gruyter |
record_format | Article |
series | Nonautonomous Dynamical Systems |
spelling | doaj.art-23e4f6cfdca54d23afc4fd844abd90112022-12-21T23:03:50ZengDe GruyterNonautonomous Dynamical Systems2353-06262014-01-011110.2478/msds-2014-0001msds-2014-0001Chaos synchronization of a fractional nonautonomous systemHammouch Zakia0Mekkaoui Toufik1E3MI Group Department of Mathematics„ FSTE Moulay Ismail University„ BP 509 Boutalamine Errachidia 52000, MoroccoE3MI Group Department of Mathematics„ FSTE Moulay Ismail University„ BP 509 Boutalamine Errachidia 52000, MoroccoIn this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the efiectiveness of the proposed methodshttp://www.degruyter.com/view/j/msds.2014.1.issue-1/msds-2014-0001/msds-2014-0001.xml?format=INTChaosFractional-order systemActive controlPLLSynchronization |
spellingShingle | Hammouch Zakia Mekkaoui Toufik Chaos synchronization of a fractional nonautonomous system Nonautonomous Dynamical Systems Chaos Fractional-order system Active control PLL Synchronization |
title | Chaos synchronization of a fractional nonautonomous system |
title_full | Chaos synchronization of a fractional nonautonomous system |
title_fullStr | Chaos synchronization of a fractional nonautonomous system |
title_full_unstemmed | Chaos synchronization of a fractional nonautonomous system |
title_short | Chaos synchronization of a fractional nonautonomous system |
title_sort | chaos synchronization of a fractional nonautonomous system |
topic | Chaos Fractional-order system Active control PLL Synchronization |
url | http://www.degruyter.com/view/j/msds.2014.1.issue-1/msds-2014-0001/msds-2014-0001.xml?format=INT |
work_keys_str_mv | AT hammouchzakia chaossynchronizationofafractionalnonautonomoussystem AT mekkaouitoufik chaossynchronizationofafractionalnonautonomoussystem |