Investigation on compatibility of PLA/PBAT blends modified by epoxy-terminated branched polymers through chemical micro-crosslinking

In this study, a type of epoxy-terminated branched polymer (ETBP) was used as an interface compati- bilizer to modify the poly lactic acid (PLA)/poly(butylene adipate-co-butylene terephthalate) (PBAT) (70/30) blends. Upon addition of ETBP, the difference in glass transition temperature between PLA a...

Full description

Bibliographic Details
Main Authors: Wang Bo, Jin Yujuan, Kang Kai’er, Yang Nan, Weng Yunxuan, Huang Zhigang, Men Shuang
Format: Article
Language:English
Published: De Gruyter 2020-02-01
Series:e-Polymers
Subjects:
Online Access:http://www.degruyter.com/view/j/epoly.2020.20.issue-1/epoly-2020-0005/epoly-2020-0005.xml?format=INT
Description
Summary:In this study, a type of epoxy-terminated branched polymer (ETBP) was used as an interface compati- bilizer to modify the poly lactic acid (PLA)/poly(butylene adipate-co-butylene terephthalate) (PBAT) (70/30) blends. Upon addition of ETBP, the difference in glass transition temperature between PLA and PBAT became smaller. By adding 3.0 phr of ETBP, the elongation at break of the PLA/PBAT blends was found increased from 45.8% to 272.0%; the impact strength increased from 26.2 kJ·m−2 to 45.3 kJ·m−2. In SEM analysis, it was observed that the size of the dispersed PBAT particle decreased with the increasing of ETBP content. These results indicated that the compatibility between PLA and PBAT can be effectively enhanced by using ETBP as the modifier. The modification mechanism was discussed in detail. It proposes that both physical and chemical micro-crosslinking were formed, the latter of which was confirmed by gel content analysis.
ISSN:1618-7229