On the Norm of the Abelian <i>p</i>-Group-Residuals

Let <i>G</i> be a group. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</m...

Full description

Bibliographic Details
Main Authors: Baojun Li, Yu Han, Lü Gong, Tong Jiang
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/8/842
_version_ 1797537907128401920
author Baojun Li
Yu Han
Lü Gong
Tong Jiang
author_facet Baojun Li
Yu Han
Lü Gong
Tong Jiang
author_sort Baojun Li
collection DOAJ
description Let <i>G</i> be a group. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>⋂</mo><mrow><mi>H</mi><mo>≤</mo><mi>G</mi></mrow></msub><msub><mi>N</mi><mi>G</mi></msub><mrow><mo>(</mo><msup><mi>H</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is defined and, the properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are investigated. It is proved that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo>[</mo><mi>A</mi><mo>]</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>=</mo><mi>D</mi><mo>(</mo><mi>P</mi><mo>)</mo></mrow></semantics></math></inline-formula> is the Sylow <i>p</i>-subgroup and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>=</mo><mi>N</mi><mo>(</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a Hall <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mo>′</mo></msup></semantics></math></inline-formula>-subgroup of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, respectively. Furthermore, it is proved in a group <i>G</i> that (1) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>G</mi></msub><mrow><mo>(</mo><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>; (2) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>O</mi><msup><mi>p</mi><mo>′</mo></msup></msub><mrow><mo>(</mo><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><msub><mi>Z</mi><mo>∞</mo></msub><mrow><mo>(</mo><msup><mi>O</mi><mi>p</mi></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and (3) if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>G</mi></msub><mrow><mo>(</mo><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T12:22:55Z
format Article
id doaj.art-23f3845c979c4a49910061a10fa0f67d
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T12:22:55Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-23f3845c979c4a49910061a10fa0f67d2023-11-21T15:18:03ZengMDPI AGMathematics2227-73902021-04-019884210.3390/math9080842On the Norm of the Abelian <i>p</i>-Group-ResidualsBaojun Li0Yu Han1Lü Gong2Tong Jiang3School of Sciences, Nantong University, Nantong 226019, ChinaSchool of Sciences, Nantong University, Nantong 226019, ChinaSchool of Sciences, Nantong University, Nantong 226019, ChinaSchool of Sciences, Nantong University, Nantong 226019, ChinaLet <i>G</i> be a group. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>⋂</mo><mrow><mi>H</mi><mo>≤</mo><mi>G</mi></mrow></msub><msub><mi>N</mi><mi>G</mi></msub><mrow><mo>(</mo><msup><mi>H</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is defined and, the properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are investigated. It is proved that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo>[</mo><mi>A</mi><mo>]</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>=</mo><mi>D</mi><mo>(</mo><mi>P</mi><mo>)</mo></mrow></semantics></math></inline-formula> is the Sylow <i>p</i>-subgroup and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>=</mo><mi>N</mi><mo>(</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a Hall <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mo>′</mo></msup></semantics></math></inline-formula>-subgroup of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, respectively. Furthermore, it is proved in a group <i>G</i> that (1) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>G</mi></msub><mrow><mo>(</mo><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>; (2) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>O</mi><msup><mi>p</mi><mo>′</mo></msup></msub><mrow><mo>(</mo><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><msub><mi>Z</mi><mo>∞</mo></msub><mrow><mo>(</mo><msup><mi>O</mi><mi>p</mi></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and (3) if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>G</mi></msub><mrow><mo>(</mo><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/9/8/842finite groupabelian p-group residualsoluble groupnormalizer
spellingShingle Baojun Li
Yu Han
Lü Gong
Tong Jiang
On the Norm of the Abelian <i>p</i>-Group-Residuals
Mathematics
finite group
abelian p-group residual
soluble group
normalizer
title On the Norm of the Abelian <i>p</i>-Group-Residuals
title_full On the Norm of the Abelian <i>p</i>-Group-Residuals
title_fullStr On the Norm of the Abelian <i>p</i>-Group-Residuals
title_full_unstemmed On the Norm of the Abelian <i>p</i>-Group-Residuals
title_short On the Norm of the Abelian <i>p</i>-Group-Residuals
title_sort on the norm of the abelian i p i group residuals
topic finite group
abelian p-group residual
soluble group
normalizer
url https://www.mdpi.com/2227-7390/9/8/842
work_keys_str_mv AT baojunli onthenormoftheabelianipigroupresiduals
AT yuhan onthenormoftheabelianipigroupresiduals
AT lugong onthenormoftheabelianipigroupresiduals
AT tongjiang onthenormoftheabelianipigroupresiduals