Computational Acceleration of Topology Optimization Using Deep Learning
Topology optimization is a computationally expensive process, especially when complicated designs are studied, and this is mainly due to its finite element analysis and iterative solvers incorporated into the algorithm. In the current work, we investigated the application of deep learning methods to...
Päätekijät: | Jalal Rasulzade, Samir Rustamov, Bakytzhan Akhmetov, Yelaman Maksum, Makpal Nogaibayeva |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
MDPI AG
2022-12-01
|
Sarja: | Applied Sciences |
Aiheet: | |
Linkit: | https://www.mdpi.com/2076-3417/13/1/479 |
Samankaltaisia teoksia
-
Randomly Distributed Passive Seismic Source Reconstruction Record Waveform Rectification Based on Deep Learning
Tekijä: Binghui Zhao, et al.
Julkaistu: (2024-03-01) -
Boosting Unsupervised Dorsal Hand Vein Segmentation with U-Net Variants
Tekijä: Szidónia Lefkovits, et al.
Julkaistu: (2022-07-01) -
Brain Tumor Detection and Classification Using Fine-Tuned CNN with ResNet50 and U-Net Model: A Study on TCGA-LGG and TCIA Dataset for MRI Applications
Tekijä: Abdullah A. Asiri, et al.
Julkaistu: (2023-06-01) -
On the Exploration of Automatic Building Extraction from RGB Satellite Images Using Deep Learning Architectures Based on U-Net
Tekijä: Anastasios Temenos, et al.
Julkaistu: (2022-01-01) -
CResU-Net: a method for landslide mapping using deep learning
Tekijä: Thang M Pham, et al.
Julkaistu: (2024-01-01)