Domination in 4-regular Knödel graphs

A subset D of vertices of a graph G is a dominating set if for each u ∈ V(G) ∖ D, u is adjacent to some vertex v ∈ D. The domination number, γ(G) of G, is the minimum cardinality of a dominating set of G. For an even integer n ≥ 2 and 1 ≤ Δ ≤ ⌊log2n⌋, a Knödel graph WΔ, n is a Δ-regular bipartite gr...

Full description

Bibliographic Details
Main Authors: Mojdeh Doost Ali, Musawi S.R., Nazari E.
Format: Article
Language:English
Published: De Gruyter 2018-08-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2018-0072
_version_ 1819122024309587968
author Mojdeh Doost Ali
Musawi S.R.
Nazari E.
author_facet Mojdeh Doost Ali
Musawi S.R.
Nazari E.
author_sort Mojdeh Doost Ali
collection DOAJ
description A subset D of vertices of a graph G is a dominating set if for each u ∈ V(G) ∖ D, u is adjacent to some vertex v ∈ D. The domination number, γ(G) of G, is the minimum cardinality of a dominating set of G. For an even integer n ≥ 2 and 1 ≤ Δ ≤ ⌊log2n⌋, a Knödel graph WΔ, n is a Δ-regular bipartite graph of even order n, with vertices (i, j), for i = 1, 2 and 0 ≤ j ≤ n/2 − 1, where for every j, 0 ≤ j ≤ n/2 − 1, there is an edge between vertex (1, j) and every vertex (2, (j+2k − 1) mod (n/2)), for k = 0, 1, ⋯, Δ − 1. In this paper, we determine the domination number in 4-regular Knödel graphs W4,n.
first_indexed 2024-12-22T06:45:52Z
format Article
id doaj.art-23fb2bee4c4e4f23ba9ef114479cf77e
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-12-22T06:45:52Z
publishDate 2018-08-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-23fb2bee4c4e4f23ba9ef114479cf77e2022-12-21T18:35:17ZengDe GruyterOpen Mathematics2391-54552018-08-0116181682510.1515/math-2018-0072math-2018-0072Domination in 4-regular Knödel graphsMojdeh Doost Ali0Musawi S.R.1Nazari E.2Department of Mathematics, University of Mazandaran, Babolsar, IranDepartment of Mathematics, Tafresh University, Tafresh, IranDepartment of Mathematics, Tafresh University, Tafresh, IranA subset D of vertices of a graph G is a dominating set if for each u ∈ V(G) ∖ D, u is adjacent to some vertex v ∈ D. The domination number, γ(G) of G, is the minimum cardinality of a dominating set of G. For an even integer n ≥ 2 and 1 ≤ Δ ≤ ⌊log2n⌋, a Knödel graph WΔ, n is a Δ-regular bipartite graph of even order n, with vertices (i, j), for i = 1, 2 and 0 ≤ j ≤ n/2 − 1, where for every j, 0 ≤ j ≤ n/2 − 1, there is an edge between vertex (1, j) and every vertex (2, (j+2k − 1) mod (n/2)), for k = 0, 1, ⋯, Δ − 1. In this paper, we determine the domination number in 4-regular Knödel graphs W4,n.https://doi.org/10.1515/math-2018-0072knödel graphdomination numberpigoenhole principal05c6905c30
spellingShingle Mojdeh Doost Ali
Musawi S.R.
Nazari E.
Domination in 4-regular Knödel graphs
Open Mathematics
knödel graph
domination number
pigoenhole principal
05c69
05c30
title Domination in 4-regular Knödel graphs
title_full Domination in 4-regular Knödel graphs
title_fullStr Domination in 4-regular Knödel graphs
title_full_unstemmed Domination in 4-regular Knödel graphs
title_short Domination in 4-regular Knödel graphs
title_sort domination in 4 regular knodel graphs
topic knödel graph
domination number
pigoenhole principal
05c69
05c30
url https://doi.org/10.1515/math-2018-0072
work_keys_str_mv AT mojdehdoostali dominationin4regularknodelgraphs
AT musawisr dominationin4regularknodelgraphs
AT nazarie dominationin4regularknodelgraphs