HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369&thinsp;nm

<p>Oxidation flow reactors (OFRs) are an emerging technique for studying the formation and oxidative aging of organic aerosols and other applications. In these flow reactors, hydroxyl radicals (OH), hydroperoxyl radicals (<span class="inline-formula">HO<sub>2</sub>&...

Full description

Bibliographic Details
Main Authors: A. T. Lambe, J. E. Krechmer, Z. Peng, J. R. Casar, A. J. Carrasquillo, J. D. Raff, J. L. Jimenez, D. R. Worsnop
Format: Article
Language:English
Published: Copernicus Publications 2019-01-01
Series:Atmospheric Measurement Techniques
Online Access:https://www.atmos-meas-tech.net/12/299/2019/amt-12-299-2019.pdf
_version_ 1818272922088767488
author A. T. Lambe
J. E. Krechmer
Z. Peng
J. R. Casar
A. J. Carrasquillo
J. D. Raff
J. L. Jimenez
D. R. Worsnop
D. R. Worsnop
author_facet A. T. Lambe
J. E. Krechmer
Z. Peng
J. R. Casar
A. J. Carrasquillo
J. D. Raff
J. L. Jimenez
D. R. Worsnop
D. R. Worsnop
author_sort A. T. Lambe
collection DOAJ
description <p>Oxidation flow reactors (OFRs) are an emerging technique for studying the formation and oxidative aging of organic aerosols and other applications. In these flow reactors, hydroxyl radicals (OH), hydroperoxyl radicals (<span class="inline-formula">HO<sub>2</sub></span>), and nitric oxide (NO) are typically produced in the following ways: photolysis of ozone (<span class="inline-formula">O<sub>3</sub></span>) at <span class="inline-formula"><i>λ</i>=25</span>4&thinsp;nm, photolysis of <span class="inline-formula">H<sub>2</sub>O</span> at <span class="inline-formula"><i>λ</i>=185</span>&thinsp;nm, and via reactions of <span class="inline-formula">O(<sup>1</sup>D)</span> with <span class="inline-formula">H<sub>2</sub>O</span> and nitrous oxide <span class="inline-formula">(N<sub>2</sub>O)</span>; <span class="inline-formula">O(<sup>1</sup>D)</span> is formed via photolysis of <span class="inline-formula">O<sub>3</sub></span> at <span class="inline-formula"><i>λ</i>=254</span>&thinsp;nm and/or <span class="inline-formula">N<sub>2</sub>O</span> at <span class="inline-formula"><i>λ</i>=185</span>&thinsp;nm. Here, we adapt a complementary method that uses alkyl nitrite photolysis as a source of OH via its production of <span class="inline-formula">HO<sub>2</sub></span> and NO followed by the reaction NO&thinsp;<span class="inline-formula">+</span>&thinsp;<span class="inline-formula">HO<sub>2</sub></span>&thinsp;<span class="inline-formula">→</span>&thinsp;<span class="inline-formula">NO<sub>2</sub></span>&thinsp;<span class="inline-formula">+</span>&thinsp;OH. We present experimental and model characterization of the OH exposure and <span class="inline-formula">NO<sub><i>x</i></sub></span> levels generated via photolysis of <span class="inline-formula">C<sub>3</sub></span> alkyl nitrites (isopropyl nitrite, perdeuterated isopropyl nitrite, 1,3-propyl dinitrite) in the Potential Aerosol Mass (PAM) OFR as a function of photolysis wavelength (<span class="inline-formula"><i>λ</i>=254</span> to 369&thinsp;nm) and organic nitrite concentration (0.5 to 20&thinsp;ppm). We also apply this technique in conjunction with chemical ionization mass spectrometer measurements of multifunctional oxidation products generated following the exposure of <span class="inline-formula"><i>α</i></span>-Pinene to <span class="inline-formula">HO<sub><i>x</i></sub></span> and <span class="inline-formula">NO<sub><i>x</i></sub></span> obtained using both isopropyl nitrite and <span class="inline-formula">O<sub>3</sub></span>&thinsp;<span class="inline-formula">+</span>&thinsp;<span class="inline-formula">H<sub>2</sub>O</span>&thinsp;<span class="inline-formula">+</span>&thinsp;<span class="inline-formula">N<sub>2</sub>O</span> as the radical precursors.</p>
first_indexed 2024-12-12T21:49:45Z
format Article
id doaj.art-23fc3e0f208b4e1aa172f56c1136e8d3
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-12-12T21:49:45Z
publishDate 2019-01-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-23fc3e0f208b4e1aa172f56c1136e8d32022-12-22T00:10:50ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482019-01-011229931110.5194/amt-12-299-2019HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369&thinsp;nmA. T. Lambe0J. E. Krechmer1Z. Peng2J. R. Casar3A. J. Carrasquillo4J. D. Raff5J. L. Jimenez6D. R. Worsnop7D. R. Worsnop8Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA, USACenter for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA, USADept. of Chemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USADept. of Chemistry, Harvey Mudd College, Claremont, CA, USADept. of Chemistry, Williams College, Williamstown, MA, USASchool of Public and Environmental Affairs, Indiana University, Bloomington, IN, USADept. of Chemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USACenter for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA, USADept. of Physics, University of Helsinki, Helsinki, Finland<p>Oxidation flow reactors (OFRs) are an emerging technique for studying the formation and oxidative aging of organic aerosols and other applications. In these flow reactors, hydroxyl radicals (OH), hydroperoxyl radicals (<span class="inline-formula">HO<sub>2</sub></span>), and nitric oxide (NO) are typically produced in the following ways: photolysis of ozone (<span class="inline-formula">O<sub>3</sub></span>) at <span class="inline-formula"><i>λ</i>=25</span>4&thinsp;nm, photolysis of <span class="inline-formula">H<sub>2</sub>O</span> at <span class="inline-formula"><i>λ</i>=185</span>&thinsp;nm, and via reactions of <span class="inline-formula">O(<sup>1</sup>D)</span> with <span class="inline-formula">H<sub>2</sub>O</span> and nitrous oxide <span class="inline-formula">(N<sub>2</sub>O)</span>; <span class="inline-formula">O(<sup>1</sup>D)</span> is formed via photolysis of <span class="inline-formula">O<sub>3</sub></span> at <span class="inline-formula"><i>λ</i>=254</span>&thinsp;nm and/or <span class="inline-formula">N<sub>2</sub>O</span> at <span class="inline-formula"><i>λ</i>=185</span>&thinsp;nm. Here, we adapt a complementary method that uses alkyl nitrite photolysis as a source of OH via its production of <span class="inline-formula">HO<sub>2</sub></span> and NO followed by the reaction NO&thinsp;<span class="inline-formula">+</span>&thinsp;<span class="inline-formula">HO<sub>2</sub></span>&thinsp;<span class="inline-formula">→</span>&thinsp;<span class="inline-formula">NO<sub>2</sub></span>&thinsp;<span class="inline-formula">+</span>&thinsp;OH. We present experimental and model characterization of the OH exposure and <span class="inline-formula">NO<sub><i>x</i></sub></span> levels generated via photolysis of <span class="inline-formula">C<sub>3</sub></span> alkyl nitrites (isopropyl nitrite, perdeuterated isopropyl nitrite, 1,3-propyl dinitrite) in the Potential Aerosol Mass (PAM) OFR as a function of photolysis wavelength (<span class="inline-formula"><i>λ</i>=254</span> to 369&thinsp;nm) and organic nitrite concentration (0.5 to 20&thinsp;ppm). We also apply this technique in conjunction with chemical ionization mass spectrometer measurements of multifunctional oxidation products generated following the exposure of <span class="inline-formula"><i>α</i></span>-Pinene to <span class="inline-formula">HO<sub><i>x</i></sub></span> and <span class="inline-formula">NO<sub><i>x</i></sub></span> obtained using both isopropyl nitrite and <span class="inline-formula">O<sub>3</sub></span>&thinsp;<span class="inline-formula">+</span>&thinsp;<span class="inline-formula">H<sub>2</sub>O</span>&thinsp;<span class="inline-formula">+</span>&thinsp;<span class="inline-formula">N<sub>2</sub>O</span> as the radical precursors.</p>https://www.atmos-meas-tech.net/12/299/2019/amt-12-299-2019.pdf
spellingShingle A. T. Lambe
J. E. Krechmer
Z. Peng
J. R. Casar
A. J. Carrasquillo
J. D. Raff
J. L. Jimenez
D. R. Worsnop
D. R. Worsnop
HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369&thinsp;nm
Atmospheric Measurement Techniques
title HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369&thinsp;nm
title_full HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369&thinsp;nm
title_fullStr HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369&thinsp;nm
title_full_unstemmed HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369&thinsp;nm
title_short HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369&thinsp;nm
title_sort ho sub i x i sub and no sub i x i sub production in oxidation flow reactors via photolysis of isopropyl nitrite isopropyl nitrite d sub 7 sub and 1 3 propyl dinitrite at i λ i 254 350 and 369 thinsp nm
url https://www.atmos-meas-tech.net/12/299/2019/amt-12-299-2019.pdf
work_keys_str_mv AT atlambe hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm
AT jekrechmer hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm
AT zpeng hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm
AT jrcasar hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm
AT ajcarrasquillo hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm
AT jdraff hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm
AT jljimenez hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm
AT drworsnop hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm
AT drworsnop hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm