HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369 nm
<p>Oxidation flow reactors (OFRs) are an emerging technique for studying the formation and oxidative aging of organic aerosols and other applications. In these flow reactors, hydroxyl radicals (OH), hydroperoxyl radicals (<span class="inline-formula">HO<sub>2</sub>&...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-01-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://www.atmos-meas-tech.net/12/299/2019/amt-12-299-2019.pdf |
_version_ | 1818272922088767488 |
---|---|
author | A. T. Lambe J. E. Krechmer Z. Peng J. R. Casar A. J. Carrasquillo J. D. Raff J. L. Jimenez D. R. Worsnop D. R. Worsnop |
author_facet | A. T. Lambe J. E. Krechmer Z. Peng J. R. Casar A. J. Carrasquillo J. D. Raff J. L. Jimenez D. R. Worsnop D. R. Worsnop |
author_sort | A. T. Lambe |
collection | DOAJ |
description | <p>Oxidation flow reactors (OFRs) are an emerging technique for studying the
formation and oxidative aging of organic aerosols and other applications. In
these flow reactors, hydroxyl radicals (OH), hydroperoxyl radicals
(<span class="inline-formula">HO<sub>2</sub></span>), and nitric oxide (NO) are typically produced in the following
ways: photolysis of ozone (<span class="inline-formula">O<sub>3</sub></span>) at <span class="inline-formula"><i>λ</i>=25</span>4 nm, photolysis of
<span class="inline-formula">H<sub>2</sub>O</span> at <span class="inline-formula"><i>λ</i>=185</span> nm, and via reactions of <span class="inline-formula">O(<sup>1</sup>D)</span> with
<span class="inline-formula">H<sub>2</sub>O</span> and nitrous oxide <span class="inline-formula">(N<sub>2</sub>O)</span>; <span class="inline-formula">O(<sup>1</sup>D)</span> is formed via
photolysis of <span class="inline-formula">O<sub>3</sub></span> at <span class="inline-formula"><i>λ</i>=254</span> nm and/or <span class="inline-formula">N<sub>2</sub>O</span> at
<span class="inline-formula"><i>λ</i>=185</span> nm. Here, we adapt a complementary method that uses alkyl
nitrite photolysis as a source of OH via its production of <span class="inline-formula">HO<sub>2</sub></span> and NO
followed by the reaction NO <span class="inline-formula">+</span> <span class="inline-formula">HO<sub>2</sub></span> <span class="inline-formula">→</span> <span class="inline-formula">NO<sub>2</sub></span> <span class="inline-formula">+</span> OH. We
present experimental and model characterization of the OH exposure and
<span class="inline-formula">NO<sub><i>x</i></sub></span> levels generated via photolysis of <span class="inline-formula">C<sub>3</sub></span> alkyl nitrites
(isopropyl nitrite, perdeuterated isopropyl nitrite, 1,3-propyl dinitrite) in
the Potential Aerosol Mass (PAM) OFR as a function of photolysis wavelength
(<span class="inline-formula"><i>λ</i>=254</span> to 369 nm) and organic nitrite concentration (0.5 to 20 ppm). We also apply this technique in conjunction with chemical ionization
mass spectrometer measurements of multifunctional oxidation products
generated following the exposure of <span class="inline-formula"><i>α</i></span>-Pinene to <span class="inline-formula">HO<sub><i>x</i></sub></span> and
<span class="inline-formula">NO<sub><i>x</i></sub></span> obtained using both isopropyl nitrite and <span class="inline-formula">O<sub>3</sub></span> <span class="inline-formula">+</span> <span class="inline-formula">H<sub>2</sub>O</span> <span class="inline-formula">+</span> <span class="inline-formula">N<sub>2</sub>O</span> as the radical precursors.</p> |
first_indexed | 2024-12-12T21:49:45Z |
format | Article |
id | doaj.art-23fc3e0f208b4e1aa172f56c1136e8d3 |
institution | Directory Open Access Journal |
issn | 1867-1381 1867-8548 |
language | English |
last_indexed | 2024-12-12T21:49:45Z |
publishDate | 2019-01-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Measurement Techniques |
spelling | doaj.art-23fc3e0f208b4e1aa172f56c1136e8d32022-12-22T00:10:50ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482019-01-011229931110.5194/amt-12-299-2019HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369 nmA. T. Lambe0J. E. Krechmer1Z. Peng2J. R. Casar3A. J. Carrasquillo4J. D. Raff5J. L. Jimenez6D. R. Worsnop7D. R. Worsnop8Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA, USACenter for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA, USADept. of Chemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USADept. of Chemistry, Harvey Mudd College, Claremont, CA, USADept. of Chemistry, Williams College, Williamstown, MA, USASchool of Public and Environmental Affairs, Indiana University, Bloomington, IN, USADept. of Chemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USACenter for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA, USADept. of Physics, University of Helsinki, Helsinki, Finland<p>Oxidation flow reactors (OFRs) are an emerging technique for studying the formation and oxidative aging of organic aerosols and other applications. In these flow reactors, hydroxyl radicals (OH), hydroperoxyl radicals (<span class="inline-formula">HO<sub>2</sub></span>), and nitric oxide (NO) are typically produced in the following ways: photolysis of ozone (<span class="inline-formula">O<sub>3</sub></span>) at <span class="inline-formula"><i>λ</i>=25</span>4 nm, photolysis of <span class="inline-formula">H<sub>2</sub>O</span> at <span class="inline-formula"><i>λ</i>=185</span> nm, and via reactions of <span class="inline-formula">O(<sup>1</sup>D)</span> with <span class="inline-formula">H<sub>2</sub>O</span> and nitrous oxide <span class="inline-formula">(N<sub>2</sub>O)</span>; <span class="inline-formula">O(<sup>1</sup>D)</span> is formed via photolysis of <span class="inline-formula">O<sub>3</sub></span> at <span class="inline-formula"><i>λ</i>=254</span> nm and/or <span class="inline-formula">N<sub>2</sub>O</span> at <span class="inline-formula"><i>λ</i>=185</span> nm. Here, we adapt a complementary method that uses alkyl nitrite photolysis as a source of OH via its production of <span class="inline-formula">HO<sub>2</sub></span> and NO followed by the reaction NO <span class="inline-formula">+</span> <span class="inline-formula">HO<sub>2</sub></span> <span class="inline-formula">→</span> <span class="inline-formula">NO<sub>2</sub></span> <span class="inline-formula">+</span> OH. We present experimental and model characterization of the OH exposure and <span class="inline-formula">NO<sub><i>x</i></sub></span> levels generated via photolysis of <span class="inline-formula">C<sub>3</sub></span> alkyl nitrites (isopropyl nitrite, perdeuterated isopropyl nitrite, 1,3-propyl dinitrite) in the Potential Aerosol Mass (PAM) OFR as a function of photolysis wavelength (<span class="inline-formula"><i>λ</i>=254</span> to 369 nm) and organic nitrite concentration (0.5 to 20 ppm). We also apply this technique in conjunction with chemical ionization mass spectrometer measurements of multifunctional oxidation products generated following the exposure of <span class="inline-formula"><i>α</i></span>-Pinene to <span class="inline-formula">HO<sub><i>x</i></sub></span> and <span class="inline-formula">NO<sub><i>x</i></sub></span> obtained using both isopropyl nitrite and <span class="inline-formula">O<sub>3</sub></span> <span class="inline-formula">+</span> <span class="inline-formula">H<sub>2</sub>O</span> <span class="inline-formula">+</span> <span class="inline-formula">N<sub>2</sub>O</span> as the radical precursors.</p>https://www.atmos-meas-tech.net/12/299/2019/amt-12-299-2019.pdf |
spellingShingle | A. T. Lambe J. E. Krechmer Z. Peng J. R. Casar A. J. Carrasquillo J. D. Raff J. L. Jimenez D. R. Worsnop D. R. Worsnop HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369 nm Atmospheric Measurement Techniques |
title | HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369 nm |
title_full | HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369 nm |
title_fullStr | HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369 nm |
title_full_unstemmed | HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369 nm |
title_short | HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369 nm |
title_sort | ho sub i x i sub and no sub i x i sub production in oxidation flow reactors via photolysis of isopropyl nitrite isopropyl nitrite d sub 7 sub and 1 3 propyl dinitrite at i λ i 254 350 and 369 thinsp nm |
url | https://www.atmos-meas-tech.net/12/299/2019/amt-12-299-2019.pdf |
work_keys_str_mv | AT atlambe hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm AT jekrechmer hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm AT zpeng hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm AT jrcasar hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm AT ajcarrasquillo hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm AT jdraff hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm AT jljimenez hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm AT drworsnop hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm AT drworsnop hosubixisubandnosubixisubproductioninoxidationflowreactorsviaphotolysisofisopropylnitriteisopropylnitritedsub7suband13propyldinitriteatili254350and369thinspnm |