Prediksi Data Runtun Waktu Menggunakan Jaringan Syaraf Tiruan

This research concerns about application of artificial neural networks (ANN) for predicting time series data. By modifying perceptron’s activation function with linear function, we got linear networks. In order to predict time series data, these linear networks combine with adaptive LMS algorithm. A...

Full description

Bibliographic Details
Main Author: Agung Mubyarto
Format: Article
Language:Indonesian
Published: Universitas Jenderal Soedirman 2009-02-01
Series:Dinamika Rekayasa
Subjects:
Online Access:http://dinarek.unsoed.ac.id/jurnal/index.php/dinarek/article/view/20
_version_ 1829115430466224128
author Agung Mubyarto
author_facet Agung Mubyarto
author_sort Agung Mubyarto
collection DOAJ
description This research concerns about application of artificial neural networks (ANN) for predicting time series data. By modifying perceptron’s activation function with linear function, we got linear networks. In order to predict time series data, these linear networks combine with adaptive LMS algorithm. And then we had completed this model with time delay function to accommodate past data in time series. The data that used in the test had varied in frequency and sampling time. Results of the test had shown that the networks work properly to predict the data series.
first_indexed 2024-12-12T16:15:38Z
format Article
id doaj.art-23fdc3acb8724a578fe5bc08db52ba35
institution Directory Open Access Journal
issn 1858-3075
2527-6131
language Indonesian
last_indexed 2024-12-12T16:15:38Z
publishDate 2009-02-01
publisher Universitas Jenderal Soedirman
record_format Article
series Dinamika Rekayasa
spelling doaj.art-23fdc3acb8724a578fe5bc08db52ba352022-12-22T00:19:07ZindUniversitas Jenderal SoedirmanDinamika Rekayasa1858-30752527-61312009-02-0151252920Prediksi Data Runtun Waktu Menggunakan Jaringan Syaraf TiruanAgung Mubyarto0Prodi Teknik Elektro Universitas Jenderal SoedirmanThis research concerns about application of artificial neural networks (ANN) for predicting time series data. By modifying perceptron’s activation function with linear function, we got linear networks. In order to predict time series data, these linear networks combine with adaptive LMS algorithm. And then we had completed this model with time delay function to accommodate past data in time series. The data that used in the test had varied in frequency and sampling time. Results of the test had shown that the networks work properly to predict the data series.http://dinarek.unsoed.ac.id/jurnal/index.php/dinarek/article/view/20Time series data, linear networks, prediction, adaptive filter
spellingShingle Agung Mubyarto
Prediksi Data Runtun Waktu Menggunakan Jaringan Syaraf Tiruan
Dinamika Rekayasa
Time series data, linear networks, prediction, adaptive filter
title Prediksi Data Runtun Waktu Menggunakan Jaringan Syaraf Tiruan
title_full Prediksi Data Runtun Waktu Menggunakan Jaringan Syaraf Tiruan
title_fullStr Prediksi Data Runtun Waktu Menggunakan Jaringan Syaraf Tiruan
title_full_unstemmed Prediksi Data Runtun Waktu Menggunakan Jaringan Syaraf Tiruan
title_short Prediksi Data Runtun Waktu Menggunakan Jaringan Syaraf Tiruan
title_sort prediksi data runtun waktu menggunakan jaringan syaraf tiruan
topic Time series data, linear networks, prediction, adaptive filter
url http://dinarek.unsoed.ac.id/jurnal/index.php/dinarek/article/view/20
work_keys_str_mv AT agungmubyarto prediksidataruntunwaktumenggunakanjaringansyaraftiruan