Discrete breathers and negative-temperature states

We explore the statistical behaviour of the discrete nonlinear Schrödinger equation as a test bed for the observation of negative-temperature (i.e. above infinite temperature) states in Bose–Einstein condensates in optical lattices and arrays of optical waveguides. By monitoring the microcanonical t...

Full description

Bibliographic Details
Main Authors: S Iubini, R Franzosi, R Livi, G-L Oppo, A Politi
Format: Article
Language:English
Published: IOP Publishing 2013-01-01
Series:New Journal of Physics
Online Access:https://doi.org/10.1088/1367-2630/15/2/023032
Description
Summary:We explore the statistical behaviour of the discrete nonlinear Schrödinger equation as a test bed for the observation of negative-temperature (i.e. above infinite temperature) states in Bose–Einstein condensates in optical lattices and arrays of optical waveguides. By monitoring the microcanonical temperature, we show that there exists a parameter region where the system evolves towards a state characterized by a finite density of discrete breathers and a negative temperature. Such a state persists over very long (astronomical) times since the convergence to equilibrium becomes increasingly slower as a consequence of a coarsening process. We also discuss two possible mechanisms for the generation of negative-temperature states in experimental setups, namely, the introduction of boundary dissipations and the free expansion of wavepackets initially in equilibrium at a positive temperature.
ISSN:1367-2630