Petrogenesis of the Ore-Related Intrusions of the Aikengdelesite Mo (–Cu) and Halongxiuma Mo Deposits: Implication for Geodynamic Evolution and Mineralization in the East Kunlun Orogen, Northwest China

The East Kunlun Orogenic Belt (EKOB) is the most important Triassic polymetallic metallogenic belt in China. A study about the petrogenesis of the ore-related intrusions is of great significance to the geodynamic evolution of orogenic belts. In this study, analysis of U–Pb zircon dating, whole-rock...

Full description

Bibliographic Details
Main Authors: Qinglin Xu, Yonggang Sun, Guangzhou Mao, Wei Xin, Yanqian Yang
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/13/3/447
Description
Summary:The East Kunlun Orogenic Belt (EKOB) is the most important Triassic polymetallic metallogenic belt in China. A study about the petrogenesis of the ore-related intrusions is of great significance to the geodynamic evolution of orogenic belts. In this study, analysis of U–Pb zircon dating, whole-rock major and trace element compositions, and zircon Hf isotopes for the granitoids hosting the Aikengdelesite Mo (–Cu) and Halongxiuma Mo deposits in the EKOB are studied to determine their chronology and petrogenesis. Zircon date results show that the Aikengdelesite granite porphyry and the Halongxiuma granodiorite porphyry formed at 244.2 ± 1.7 Ma and 230.0 ± 1.0 Ma respectively. All samples of the Aikengdelesite granite porphyry and the Halongxiuma granodiorite porphyry which have high SiO<sub>2</sub> and K<sub>2</sub>O contents, and low MgO and Cr, belong to the high-K calc-alkaline series. The Aikengdelesite granite porphyry samples show I-type geochemical affinities, whereas the Halongxiuma granodiorite porphyry samples are A-type granitoids. They all show negative zircon <i>ε</i><sub>Hf</sub>(<i>t</i>) values (−7.4 to −3.3 and −3.7 to −2.5). We suggest that the Aikengdelesite granite porphyry may have been derived from the lower continental crust. While the Halongxiuma granodiorite porphyry could have formed by partial melting of basic lower crustal materials. By combining the results of this study with previous data, two magmatic and mineralization peak periods (278–237 Ma and 230–210 Ma) were observed in the Paleo-Tethys of the EKOB. Porphyry–skarn deposits occurring in the first episode were formed in the setting of an active continental margin related to the Paleo-Tethys Ocean plate subduction (e.g., Aikengdelesite porphyry deposit), while deposits occurring in the second episode were formed in a post-collisional setting (e.g., Halongxiuma porphyry deposit).
ISSN:2075-163X