Affine Subspace Concentration Conditions

We define a new notion of affine subspace concentration conditions for lattice polytopes, and prove that they hold for smooth and reflexive polytopes with barycenter at the origin. Our proof involves considering the slope stability of the canonical extension of the tangent bundle by the trivial line...

Full description

Bibliographic Details
Main Author: Kuang-Yu Wu
Format: Article
Language:English
Published: Association Epiga 2023-05-01
Series:Épijournal de Géométrie Algébrique
Subjects:
Online Access:https://epiga.episciences.org/9382/pdf
_version_ 1827311455983108096
author Kuang-Yu Wu
author_facet Kuang-Yu Wu
author_sort Kuang-Yu Wu
collection DOAJ
description We define a new notion of affine subspace concentration conditions for lattice polytopes, and prove that they hold for smooth and reflexive polytopes with barycenter at the origin. Our proof involves considering the slope stability of the canonical extension of the tangent bundle by the trivial line bundle and with the extension class $c_1(\mathcal{T}_X)$ on Fano toric varieties.
first_indexed 2024-04-24T20:19:13Z
format Article
id doaj.art-2445c8f49f13438597bf650d34e7a07d
institution Directory Open Access Journal
issn 2491-6765
language English
last_indexed 2024-04-24T20:19:13Z
publishDate 2023-05-01
publisher Association Epiga
record_format Article
series Épijournal de Géométrie Algébrique
spelling doaj.art-2445c8f49f13438597bf650d34e7a07d2024-03-22T09:12:47ZengAssociation EpigaÉpijournal de Géométrie Algébrique2491-67652023-05-01Volume 710.46298/epiga.2023.93829382Affine Subspace Concentration ConditionsKuang-Yu WuWe define a new notion of affine subspace concentration conditions for lattice polytopes, and prove that they hold for smooth and reflexive polytopes with barycenter at the origin. Our proof involves considering the slope stability of the canonical extension of the tangent bundle by the trivial line bundle and with the extension class $c_1(\mathcal{T}_X)$ on Fano toric varieties.https://epiga.episciences.org/9382/pdfmathematics - algebraic geometry14m25, 14j60, 52b20
spellingShingle Kuang-Yu Wu
Affine Subspace Concentration Conditions
Épijournal de Géométrie Algébrique
mathematics - algebraic geometry
14m25, 14j60, 52b20
title Affine Subspace Concentration Conditions
title_full Affine Subspace Concentration Conditions
title_fullStr Affine Subspace Concentration Conditions
title_full_unstemmed Affine Subspace Concentration Conditions
title_short Affine Subspace Concentration Conditions
title_sort affine subspace concentration conditions
topic mathematics - algebraic geometry
14m25, 14j60, 52b20
url https://epiga.episciences.org/9382/pdf
work_keys_str_mv AT kuangyuwu affinesubspaceconcentrationconditions