Affine Subspace Concentration Conditions
We define a new notion of affine subspace concentration conditions for lattice polytopes, and prove that they hold for smooth and reflexive polytopes with barycenter at the origin. Our proof involves considering the slope stability of the canonical extension of the tangent bundle by the trivial line...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Association Epiga
2023-05-01
|
Series: | Épijournal de Géométrie Algébrique |
Subjects: | |
Online Access: | https://epiga.episciences.org/9382/pdf |
_version_ | 1827311455983108096 |
---|---|
author | Kuang-Yu Wu |
author_facet | Kuang-Yu Wu |
author_sort | Kuang-Yu Wu |
collection | DOAJ |
description | We define a new notion of affine subspace concentration conditions for
lattice polytopes, and prove that they hold for smooth and reflexive polytopes
with barycenter at the origin. Our proof involves considering the slope
stability of the canonical extension of the tangent bundle by the trivial line
bundle and with the extension class $c_1(\mathcal{T}_X)$ on Fano toric
varieties. |
first_indexed | 2024-04-24T20:19:13Z |
format | Article |
id | doaj.art-2445c8f49f13438597bf650d34e7a07d |
institution | Directory Open Access Journal |
issn | 2491-6765 |
language | English |
last_indexed | 2024-04-24T20:19:13Z |
publishDate | 2023-05-01 |
publisher | Association Epiga |
record_format | Article |
series | Épijournal de Géométrie Algébrique |
spelling | doaj.art-2445c8f49f13438597bf650d34e7a07d2024-03-22T09:12:47ZengAssociation EpigaÉpijournal de Géométrie Algébrique2491-67652023-05-01Volume 710.46298/epiga.2023.93829382Affine Subspace Concentration ConditionsKuang-Yu WuWe define a new notion of affine subspace concentration conditions for lattice polytopes, and prove that they hold for smooth and reflexive polytopes with barycenter at the origin. Our proof involves considering the slope stability of the canonical extension of the tangent bundle by the trivial line bundle and with the extension class $c_1(\mathcal{T}_X)$ on Fano toric varieties.https://epiga.episciences.org/9382/pdfmathematics - algebraic geometry14m25, 14j60, 52b20 |
spellingShingle | Kuang-Yu Wu Affine Subspace Concentration Conditions Épijournal de Géométrie Algébrique mathematics - algebraic geometry 14m25, 14j60, 52b20 |
title | Affine Subspace Concentration Conditions |
title_full | Affine Subspace Concentration Conditions |
title_fullStr | Affine Subspace Concentration Conditions |
title_full_unstemmed | Affine Subspace Concentration Conditions |
title_short | Affine Subspace Concentration Conditions |
title_sort | affine subspace concentration conditions |
topic | mathematics - algebraic geometry 14m25, 14j60, 52b20 |
url | https://epiga.episciences.org/9382/pdf |
work_keys_str_mv | AT kuangyuwu affinesubspaceconcentrationconditions |