A miniaturization scheme of flexible inkjet-printed Ag/AgCl(s) reference electrodes using the ionic liquid (IL)-typed PVC membrane with the addition of graphene for electrochemical sensing applications

ABSTRACT: In this paper, we study size effects on the reference electrode performance of flexible inkjet printed electrochemical (EC) sensors and present a scheme to print a reliable miniaturized Ag/AgCl(s) electrode for biomedical device applications. The newly printed electrode only with a size of...

Full description

Bibliographic Details
Main Authors: Kun-Lin Tsou, Yu-Ting Cheng
Format: Article
Language:English
Published: Elsevier 2023-06-01
Series:Sensors and Actuators Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666053923000085
Description
Summary:ABSTRACT: In this paper, we study size effects on the reference electrode performance of flexible inkjet printed electrochemical (EC) sensors and present a scheme to print a reliable miniaturized Ag/AgCl(s) electrode for biomedical device applications. The newly printed electrode only with a size of 6900 μm2, i.e., equivalent to 83 × 83 μm2 can perform as well as the commercial one. Experimental results show the electrode impedance is effectively reduced via the incorporation of graphene flakes into the ionic liquid-based PVC film coated on the electrode to accelerate the ion-transferring rate of the chloride ions, thereby facilitating rapid chloride ion redistribution for the film to reach a quick potential balance with the reference electrode for open circuit potential (OCP) measurement. The EC sensors using the reference electrode can exhibit a fixed OCP output with a low potential variation, quick response time and potential drift, which are ±2.1 mV variant, 50 s, and 23.5 μV/h, respectively regardless of the concentration of chloride ions in the tested environment.
ISSN:2666-0539