Neural coding of movement direction in the healthy human brain.
Neurophysiological studies in monkeys show that activity of neurons in primary cortex (M1), pre-motor cortex (PMC), and cerebellum varies systematically with the direction of reaching movements. These neurons exhibit preferred direction tuning, where the level of neural activity is highest when move...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2010-10-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC2954155?pdf=render |
_version_ | 1819266265472040960 |
---|---|
author | Christopher D Cowper-Smith Esther Y Y Lau Carl A Helmick Gail A Eskes David A Westwood |
author_facet | Christopher D Cowper-Smith Esther Y Y Lau Carl A Helmick Gail A Eskes David A Westwood |
author_sort | Christopher D Cowper-Smith |
collection | DOAJ |
description | Neurophysiological studies in monkeys show that activity of neurons in primary cortex (M1), pre-motor cortex (PMC), and cerebellum varies systematically with the direction of reaching movements. These neurons exhibit preferred direction tuning, where the level of neural activity is highest when movements are made in the preferred direction (PD), and gets progressively lower as movements are made at increasing degrees of offset from the PD. Using a functional magnetic resonance imaging adaptation (fMRI-A) paradigm, we show that PD coding does exist in regions of the human motor system that are homologous to those observed in non-human primates. Consistent with predictions of the PD model, we show adaptation (i.e., a lower level) of the blood oxygen level dependent (BOLD) time-course signal in M1, PMC, SMA, and cerebellum when consecutive wrist movements were made in the same direction (0° offset) relative to movements offset by 90° or 180°. The BOLD signal in dorsolateral prefrontal cortex adapted equally in all movement offset conditions, mitigating against the possibility that the present results are the consequence of differential task complexity or attention to action in each movement offset condition. |
first_indexed | 2024-12-23T20:58:32Z |
format | Article |
id | doaj.art-244b4775fbc84f7092831924f02ed2e7 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-23T20:58:32Z |
publishDate | 2010-10-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-244b4775fbc84f7092831924f02ed2e72022-12-21T17:31:26ZengPublic Library of Science (PLoS)PLoS ONE1932-62032010-10-01510e1333010.1371/journal.pone.0013330Neural coding of movement direction in the healthy human brain.Christopher D Cowper-SmithEsther Y Y LauCarl A HelmickGail A EskesDavid A WestwoodNeurophysiological studies in monkeys show that activity of neurons in primary cortex (M1), pre-motor cortex (PMC), and cerebellum varies systematically with the direction of reaching movements. These neurons exhibit preferred direction tuning, where the level of neural activity is highest when movements are made in the preferred direction (PD), and gets progressively lower as movements are made at increasing degrees of offset from the PD. Using a functional magnetic resonance imaging adaptation (fMRI-A) paradigm, we show that PD coding does exist in regions of the human motor system that are homologous to those observed in non-human primates. Consistent with predictions of the PD model, we show adaptation (i.e., a lower level) of the blood oxygen level dependent (BOLD) time-course signal in M1, PMC, SMA, and cerebellum when consecutive wrist movements were made in the same direction (0° offset) relative to movements offset by 90° or 180°. The BOLD signal in dorsolateral prefrontal cortex adapted equally in all movement offset conditions, mitigating against the possibility that the present results are the consequence of differential task complexity or attention to action in each movement offset condition.http://europepmc.org/articles/PMC2954155?pdf=render |
spellingShingle | Christopher D Cowper-Smith Esther Y Y Lau Carl A Helmick Gail A Eskes David A Westwood Neural coding of movement direction in the healthy human brain. PLoS ONE |
title | Neural coding of movement direction in the healthy human brain. |
title_full | Neural coding of movement direction in the healthy human brain. |
title_fullStr | Neural coding of movement direction in the healthy human brain. |
title_full_unstemmed | Neural coding of movement direction in the healthy human brain. |
title_short | Neural coding of movement direction in the healthy human brain. |
title_sort | neural coding of movement direction in the healthy human brain |
url | http://europepmc.org/articles/PMC2954155?pdf=render |
work_keys_str_mv | AT christopherdcowpersmith neuralcodingofmovementdirectioninthehealthyhumanbrain AT estheryylau neuralcodingofmovementdirectioninthehealthyhumanbrain AT carlahelmick neuralcodingofmovementdirectioninthehealthyhumanbrain AT gailaeskes neuralcodingofmovementdirectioninthehealthyhumanbrain AT davidawestwood neuralcodingofmovementdirectioninthehealthyhumanbrain |