An isotopic analysis of ionising radiation as a source of sulphuric acid

Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism has remained undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a missing...

Full description

Bibliographic Details
Main Authors: M. B. Enghoff, N. Bork, S. Hattori, C. Meusinger, M. Nakagawa, J. O. P. Pedersen, S. Danielache, Y. Ueno, M. S. Johnson, N. Yoshida, H. Svensmark
Format: Article
Language:English
Published: Copernicus Publications 2012-06-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/12/5319/2012/acp-12-5319-2012.pdf
Description
Summary:Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism has remained undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a missing source. In this study the production of sulphuric acid from SO<sub>2</sub> through a number of different pathways is investigated. The production methods are standard gas phase oxidation by OH radicals produced by ozone photolysis with UV light, liquid phase oxidation by ozone, and gas phase oxidation initiated by gamma rays. The distributions of stable sulphur isotopes in the products and substrate were measured using isotope ratio mass spectrometry. All methods produced sulphate enriched in <sup>34</sup>S and we find an enrichment factor (δ<sup>34</sup>S) of 8.7 ± 0.4‰ (1 standard deviation) for the UV-initiated OH reaction. Only UV light (Hg emission at 253.65 nm) produced a clear non-mass-dependent excess of <sup>33</sup>S. The pattern of isotopic enrichment produced by gamma rays is similar, but not equal, to that produced by aqueous oxidation of SO<sub>2</sub> by ozone. This, combined with the relative yields of the experiments, suggests a mechanism in which ionising radiation may lead to hydrated ion clusters that serve as nanoreactors for S(IV) to S(VI) conversion.
ISSN:1680-7316
1680-7324