Summary: | The use of gold nanorods (AuNRs) as surface-enhanced Raman scattering (SERS) substrates has gained much attraction due to their remarkably aspect-ratio-dependent plasmonic properties. In this report, we described the development of AuNRs with a high aspect ratio and longitudinal surface plasmon resonance (LSPR) >850 nm through a hydroquinone-based fabrication with minor modifications. The synthesis started with the reduction of chloroauric acid (HAuCl<sub>4</sub>) by sodium borohydride (NaBH<sub>4</sub>) to make gold nanoseeds from which AuNRs were grown with the aid of silver nitrate (AgNO<sub>3</sub>), HAuCl<sub>4</sub>, cetyltrimethylammonium bromide (CTAB), and hydroquinone (HQ). Scanning electron microscopy coupled with energy-dispersive X-ray (SEM-EDX), Transmission electron microscope (TEM), X-ray diffraction (XRD) and Ultra-violet-Visible spectroscopy (UV-Vis) were performed to study the shape, size, and structural and optical properties of AuNRs, respectively. The results showed that AuNRs with high aspect ratios (AR > 3) were single crystals with a heterogenous size distribution, and that the growth of Au nanoseeds into AuNRs took place along the [001] direction. AuNRs exhibited two plasmon resonance peaks at 520 nm and 903 nm, while gold nanoseeds had only a plasmon resonance peak at 521 nm. The as-synthesized AuNRs also showed SERS effects for thiophanate methyl, a broad-spectrum fungicide, with the limit of detection down to 5 mg/L of the fungicide. AuNR-coated glass can serve as a SERS-based sensing platform for rapid detection of thiophanate methyl with high sensitivity and reproducibility.
|