Lower bounds for adiabatic quantum algorithms by quantum speed limits

We introduce a simple framework for estimating lower bounds on the runtime of a broad class of adiabatic quantum algorithms. The central formula consists of calculating the variance of the final Hamiltonian with respect to the initial state. After examining adiabatic versions of certain keystone cir...

Full description

Bibliographic Details
Main Author: Jyong-Hao Chen
Format: Article
Language:English
Published: American Physical Society 2023-09-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.5.033175
Description
Summary:We introduce a simple framework for estimating lower bounds on the runtime of a broad class of adiabatic quantum algorithms. The central formula consists of calculating the variance of the final Hamiltonian with respect to the initial state. After examining adiabatic versions of certain keystone circuit-based quantum algorithms, this technique is applied to adiabatic quantum algorithms with undetermined speedup. In particular, we analytically obtain lower bounds on adiabatic algorithms for finding k-clique in random graphs. Additionally, for a particular class of Hamiltonian, it is straightforward to prove the equivalence between our framework and the conventional approach based on spectral gap analysis.
ISSN:2643-1564