From a wide band gap to the superconducting proximity effect: Fe on Pb(111)

Epitaxially grown Fe nanostructures on Pb(111) were studied by low-temperature scanning tunneling microscopy and spectroscopy. The deposited Fe assemblies are classified into two groups according to their electronic behavior close to the Fermi energy. One group exhibits a wide energy gap of 0.7 eV t...

Full description

Bibliographic Details
Main Authors: M Omidian, J Brand, N Néel, S Crampin, J Kröger
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/acc607
Description
Summary:Epitaxially grown Fe nanostructures on Pb(111) were studied by low-temperature scanning tunneling microscopy and spectroscopy. The deposited Fe assemblies are classified into two groups according to their electronic behavior close to the Fermi energy. One group exhibits a wide energy gap of 0.7 eV that is independent of the temperature ranging from 5 K to room temperature. These Fe islands indicate the absence of the superconductivity proximity effect in their interior. The other group shows a metallic behavior at the Fermi level. The substrate superconducting phase locally enters into these islands, which is evidenced by a sharp resonance at the Fermi energy presumably signaling Andreev reflection at the magnet–superconductor interface.
ISSN:1367-2630