Influence of Oyster Shell Pyrolysis Temperature on Sediment Permeability and Remediation

Permeability is an important aspect of sediment remediation. It is well-known that oyster shells can be used for sediment remediation, however the influence of pyrolysis temperature on sediment permeability remains unknown. In this study, we examined sediment permeability and remediation using crush...

Full description

Bibliographic Details
Main Authors: Maheshkumar Prakash Patil, Hee-Eun Woo, Seokjin Yoon, Kyunghoi Kim
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/11/5/934
Description
Summary:Permeability is an important aspect of sediment remediation. It is well-known that oyster shells can be used for sediment remediation, however the influence of pyrolysis temperature on sediment permeability remains unknown. In this study, we examined sediment permeability and remediation using crushed oyster shells of less than 5 mm in size that were pyrolyzed at 350 °C (POS350) and 600 °C (POS600) for six hours. Based on the results of the variable head permeability test, POS600 has greater sediment permeability than POS350. In addition, POS600 has greater than POS350 to reduce dissolved inorganic nitrogen (DIN; NH<sub>3</sub>-N, NO<sub>2</sub>-N, and NO<sub>3</sub>-N) and phosphate (PO<sub>4</sub>-P) from organically enriched sediment because of its higher Ca<sup>2+</sup> elution. In conclusion, pyrolysis of oyster shells at 600 °C is more effective than pyrolysis at 350 °C. This finding is true because the transformation of CaCO<sub>3</sub> to CaO, which is the source of Ca<sup>2+</sup>, stimulates pore water flow. Based on these findings, it can be concluded that pyrolyzed oyster shells are beneficial for increasing sediment permeability, thereby helping in the remediation of sediments.
ISSN:2077-1312