Total Roman domination for proper interval graphs

<p>A function <em>f</em>:<em>V</em> → {0,1,2} is a total Roman dominating function (TRDF) on a graph <em>G</em>=(<em>V,E</em>) if for every vertex <em>v</em> ∈ <em>V</em> with <em>f</em>(<em>v</em>)...

Full description

Bibliographic Details
Main Author: Abolfazl Poureidi
Format: Article
Language:English
Published: Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia 2020-10-01
Series:Electronic Journal of Graph Theory and Applications
Subjects:
Online Access:https://www.ejgta.org/index.php/ejgta/article/view/952
_version_ 1828218839242899456
author Abolfazl Poureidi
author_facet Abolfazl Poureidi
author_sort Abolfazl Poureidi
collection DOAJ
description <p>A function <em>f</em>:<em>V</em> → {0,1,2} is a total Roman dominating function (TRDF) on a graph <em>G</em>=(<em>V,E</em>) if for every vertex <em>v</em> ∈ <em>V</em> with <em>f</em>(<em>v</em>) = 0 there is a vertex <em>u</em> adjacent to <em>v</em> with <em>f</em>(<em>u</em>) = 2 and for every vertex <em>v </em>∈<em> V</em> with <em>f</em>(<em>v</em>) &gt; 0 there exists a vertex <em>u</em> ∈ <em>N</em><sub><em>G</em>(<em>v</em>)</sub> with <em>f</em>(<em>u</em>) &gt; 0. The weight of a total Roman dominating function <em>f</em> on <em>G</em> is equal to <em>f</em>(<em>V</em>)=Σ<sub>v ∈ V</sub><em>f</em>(<em>v</em>). The minimum weight of a total Roman dominating function on <em>G</em> is called the total Roman domination number of <em>G</em>. In this paper, we give an algorithm to compute the total Roman domination number of a given proper interval graph <em>G</em>=(<em>V,E</em>) in <em>O</em>(|<em>V</em>|) time.</p>
first_indexed 2024-04-12T16:08:40Z
format Article
id doaj.art-24865818ae874f17a84c87e8a1ca52a5
institution Directory Open Access Journal
issn 2338-2287
language English
last_indexed 2024-04-12T16:08:40Z
publishDate 2020-10-01
publisher Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia
record_format Article
series Electronic Journal of Graph Theory and Applications
spelling doaj.art-24865818ae874f17a84c87e8a1ca52a52022-12-22T03:25:57ZengIndonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), IndonesiaElectronic Journal of Graph Theory and Applications2338-22872020-10-018240141310.5614/ejgta.2020.8.2.16192Total Roman domination for proper interval graphsAbolfazl Poureidi0Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran<p>A function <em>f</em>:<em>V</em> → {0,1,2} is a total Roman dominating function (TRDF) on a graph <em>G</em>=(<em>V,E</em>) if for every vertex <em>v</em> ∈ <em>V</em> with <em>f</em>(<em>v</em>) = 0 there is a vertex <em>u</em> adjacent to <em>v</em> with <em>f</em>(<em>u</em>) = 2 and for every vertex <em>v </em>∈<em> V</em> with <em>f</em>(<em>v</em>) &gt; 0 there exists a vertex <em>u</em> ∈ <em>N</em><sub><em>G</em>(<em>v</em>)</sub> with <em>f</em>(<em>u</em>) &gt; 0. The weight of a total Roman dominating function <em>f</em> on <em>G</em> is equal to <em>f</em>(<em>V</em>)=Σ<sub>v ∈ V</sub><em>f</em>(<em>v</em>). The minimum weight of a total Roman dominating function on <em>G</em> is called the total Roman domination number of <em>G</em>. In this paper, we give an algorithm to compute the total Roman domination number of a given proper interval graph <em>G</em>=(<em>V,E</em>) in <em>O</em>(|<em>V</em>|) time.</p>https://www.ejgta.org/index.php/ejgta/article/view/952total roman domination, algorithm, proper interval graph
spellingShingle Abolfazl Poureidi
Total Roman domination for proper interval graphs
Electronic Journal of Graph Theory and Applications
total roman domination, algorithm, proper interval graph
title Total Roman domination for proper interval graphs
title_full Total Roman domination for proper interval graphs
title_fullStr Total Roman domination for proper interval graphs
title_full_unstemmed Total Roman domination for proper interval graphs
title_short Total Roman domination for proper interval graphs
title_sort total roman domination for proper interval graphs
topic total roman domination, algorithm, proper interval graph
url https://www.ejgta.org/index.php/ejgta/article/view/952
work_keys_str_mv AT abolfazlpoureidi totalromandominationforproperintervalgraphs