DEVELOPMENT OF RAINFALL FORECASTING MODEL USING MACHINE LEARNING WITH SINGULAR SPECTRUM ANALYSIS

Agriculture is the key point for survival for developing nations like India. For farming, rainfall is generally significant. Rainfall updates are help for evaluate water assets, farming, ecosystems and hydrology. Nowadays rainfall anticipation has become a foremost issue. Forecast of rainfall offers...

Full description

Bibliographic Details
Main Authors: Pundru Chandra Shaker Reddy, Sucharitha Yadala, Surya Narayana Goddumarri
Format: Article
Language:English
Published: IIUM Press, International Islamic University Malaysia 2022-01-01
Series:International Islamic University Malaysia Engineering Journal
Subjects:
Online Access:https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/1822
Description
Summary:Agriculture is the key point for survival for developing nations like India. For farming, rainfall is generally significant. Rainfall updates are help for evaluate water assets, farming, ecosystems and hydrology. Nowadays rainfall anticipation has become a foremost issue. Forecast of rainfall offers attention to individuals and knows in advance about rainfall to avoid potential risk to shield their crop yields from severe rainfall. This study intends to investigate the dependability of integrating a data pre-processing technique called singular-spectrum-analysis (SSA) with supervised learning models called least-squares support vector regression (LS-SVR), and Random-Forest (RF), for rainfall prediction. Integrating SSA with LS-SVR and RF, the combined framework is designed and contrasted with the customary approaches (LS-SVR and RF). The presented frameworks were trained and tested utilizing a monthly climate dataset which is separated into 80:20 ratios for training and testing respectively. Performance of the model was assessed using Root Mean Square Error (RMSE) and Nash–Sutcliffe Efficiency (NSE) and the proposed model produces the values as 71.6 %, 90.2 % respectively. Experimental outcomes illustrate that the proposed model can productively predict the rainfall. ABSTRAK:Pertanian adalah titik utama kelangsungan hidup negara-negara membangun seperti India. Untuk pertanian, curah hujan pada amnya ketara. Kemas kini hujan adalah bantuan untuk menilai aset air, pertanian, ekosistem dan hidrologi. Kini, jangkaan hujan telah menjadi isu utama. Ramalan hujan memberikan perhatian kepada individu dan mengetahui terlebih dahulu mengenai hujan untuk menghindari potensi risiko untuk melindungi hasil tanaman mereka dari hujan lebat. Kajian ini bertujuan untuk menyelidiki kebolehpercayaan mengintegrasikan teknik pra-pemprosesan data yang disebut analisis-spektrum tunggal (SSA) dengan model pembelajaran yang diawasi yang disebut regresi vektor sokongan paling rendah (LS-SVR), dan Random-Forest (RF), ramalan hujan. Menggabungkan SSA dengan LS-SVR dan RF, kerangka gabungan dirancang dan dibeza-bezakan dengan pendekatan biasa (LS-SVR dan RF). Kerangka kerja yang disajikan dilatih dan diuji dengan menggunakan set data iklim bulanan yang masing-masing dipisahkan menjadi nisbah 80:20 untuk latihan dan ujian. Prestasi model dinilai menggunakan Root Mean Square Error (RMSE) dan Nash – Sutcliffe Efficiency (NSE) dan model yang dicadangkan menghasilkan nilai masing-masing sebanyak 71.6%, 90.2%. Hasil eksperimen menggambarkan bahawa model yang dicadangkan dapat meramalkan hujan secara produktif.
ISSN:1511-788X
2289-7860