Classification of Arc-Transitive Elementary Abelian Covers of the <i>C</i>13 Graph

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Γ</mo></semantics></math></inline-formula> be a graph and <inline-formula><math xmlns="http://www.w3.org/1998/Math/Ma...

Full description

Bibliographic Details
Main Authors: Qianru Xiao, Aysha Khan, Narges Mehdipoor, Ali Asghar Talebi
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/5/1066
_version_ 1797495055135539200
author Qianru Xiao
Aysha Khan
Narges Mehdipoor
Ali Asghar Talebi
author_facet Qianru Xiao
Aysha Khan
Narges Mehdipoor
Ali Asghar Talebi
author_sort Qianru Xiao
collection DOAJ
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Γ</mo></semantics></math></inline-formula> be a graph and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>⩽</mo><mi>A</mi><mi>u</mi><mi>t</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula>. A graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Γ</mo></semantics></math></inline-formula> can be called <i>G</i>-arc-transitive (GAT) if <i>G</i> acts transitively on its arc set. A regular covering projection <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>:</mo><mover><mo>Γ</mo><mo>¯</mo></mover><mo>→</mo><mo>Γ</mo></mrow></semantics></math></inline-formula> is arc-transitive (AT) if an AT subgroup of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>u</mi><mi>t</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula> lifts under <i>p</i>. In this study, by applying a number of concepts in linear algebra such as invariant subspaces (IVs) of matrix groups (MGs), we discuss regular AT elementary abelian covers (R-AT-EA-covers) of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mn>13</mn></mrow></semantics></math></inline-formula> graph.
first_indexed 2024-03-10T01:43:02Z
format Article
id doaj.art-2492b45acf5142e1a3df75e58420cc25
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T01:43:02Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-2492b45acf5142e1a3df75e58420cc252023-11-23T13:20:55ZengMDPI AGSymmetry2073-89942022-05-01145106610.3390/sym14051066Classification of Arc-Transitive Elementary Abelian Covers of the <i>C</i>13 GraphQianru Xiao0Aysha Khan1Narges Mehdipoor2Ali Asghar Talebi3Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, ChinaDepartment of Mathematics, Prince Sattam Bin Abdulaziz University, Al-Kharj 11991, Saudi ArabiaDepartment of Mathematics, University of Mazandaran, Babolsar 4741613534, IranDepartment of Mathematics, University of Mazandaran, Babolsar 4741613534, IranLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Γ</mo></semantics></math></inline-formula> be a graph and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>⩽</mo><mi>A</mi><mi>u</mi><mi>t</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula>. A graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Γ</mo></semantics></math></inline-formula> can be called <i>G</i>-arc-transitive (GAT) if <i>G</i> acts transitively on its arc set. A regular covering projection <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>:</mo><mover><mo>Γ</mo><mo>¯</mo></mover><mo>→</mo><mo>Γ</mo></mrow></semantics></math></inline-formula> is arc-transitive (AT) if an AT subgroup of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>u</mi><mi>t</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula> lifts under <i>p</i>. In this study, by applying a number of concepts in linear algebra such as invariant subspaces (IVs) of matrix groups (MGs), we discuss regular AT elementary abelian covers (R-AT-EA-covers) of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mn>13</mn></mrow></semantics></math></inline-formula> graph.https://www.mdpi.com/2073-8994/14/5/1066MGsIVshomology group<i>C</i>13 graphAT graphsregular covering
spellingShingle Qianru Xiao
Aysha Khan
Narges Mehdipoor
Ali Asghar Talebi
Classification of Arc-Transitive Elementary Abelian Covers of the <i>C</i>13 Graph
Symmetry
MGs
IVs
homology group
<i>C</i>13 graph
AT graphs
regular covering
title Classification of Arc-Transitive Elementary Abelian Covers of the <i>C</i>13 Graph
title_full Classification of Arc-Transitive Elementary Abelian Covers of the <i>C</i>13 Graph
title_fullStr Classification of Arc-Transitive Elementary Abelian Covers of the <i>C</i>13 Graph
title_full_unstemmed Classification of Arc-Transitive Elementary Abelian Covers of the <i>C</i>13 Graph
title_short Classification of Arc-Transitive Elementary Abelian Covers of the <i>C</i>13 Graph
title_sort classification of arc transitive elementary abelian covers of the i c i 13 graph
topic MGs
IVs
homology group
<i>C</i>13 graph
AT graphs
regular covering
url https://www.mdpi.com/2073-8994/14/5/1066
work_keys_str_mv AT qianruxiao classificationofarctransitiveelementaryabeliancoversoftheici13graph
AT ayshakhan classificationofarctransitiveelementaryabeliancoversoftheici13graph
AT nargesmehdipoor classificationofarctransitiveelementaryabeliancoversoftheici13graph
AT aliasghartalebi classificationofarctransitiveelementaryabeliancoversoftheici13graph