Randomized ϵ-RANKING Algorithm for Online Trichromatic Matching

We present a novel <inline-formula> <tex-math notation="LaTeX">${1}/{e}$ </tex-math></inline-formula>-competitive randomized <inline-formula> <tex-math notation="LaTeX">$\epsilon $ </tex-math></inline-formula>-RANKING algorithm for...

Full description

Bibliographic Details
Main Authors: Komal Pandya, Abyayananda Maiti
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10440337/
_version_ 1797293279433195520
author Komal Pandya
Abyayananda Maiti
author_facet Komal Pandya
Abyayananda Maiti
author_sort Komal Pandya
collection DOAJ
description We present a novel <inline-formula> <tex-math notation="LaTeX">${1}/{e}$ </tex-math></inline-formula>-competitive randomized <inline-formula> <tex-math notation="LaTeX">$\epsilon $ </tex-math></inline-formula>-RANKING algorithm for the unweighted online trichromatic matching problem. This problem involves finding matching in tripartite graphs having three disjoint sets of vertices. Our model encompasses a tripartite graph configuration, where an offline vertex set is an intermediary connecting two opposite sets. The vertices from the latter sets arrive online individually over time. <inline-formula> <tex-math notation="LaTeX">$\epsilon $ </tex-math></inline-formula>-RANKING employs a randomization strategy where offline vertices are assigned random ranks between [0, 1]. This approach exploits the principles of the <inline-formula> <tex-math notation="LaTeX">$\bigg (1-\cfrac {1}{e}\bigg)$ </tex-math></inline-formula>-competitive randomized RANKING algorithm from the domain of online bipartite matching to the more complex context of online trichromatic matching. Furthermore, with numerical experiments, we demonstrate the effectiveness of our algorithm, both with real-world and synthetic data. This work addresses the challenges of online trichromatic matching and sets a benchmark for competitive algorithms within this domain.
first_indexed 2024-03-07T20:10:36Z
format Article
id doaj.art-24a4711eaf6e49378aa1d33bf4fb905c
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-03-07T20:10:36Z
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-24a4711eaf6e49378aa1d33bf4fb905c2024-02-28T00:01:20ZengIEEEIEEE Access2169-35362024-01-0112282352824610.1109/ACCESS.2024.336779410440337Randomized &#x03F5;-RANKING Algorithm for Online Trichromatic MatchingKomal Pandya0https://orcid.org/0000-0003-2202-0451Abyayananda Maiti1Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, IndiaDepartment of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, IndiaWe present a novel <inline-formula> <tex-math notation="LaTeX">${1}/{e}$ </tex-math></inline-formula>-competitive randomized <inline-formula> <tex-math notation="LaTeX">$\epsilon $ </tex-math></inline-formula>-RANKING algorithm for the unweighted online trichromatic matching problem. This problem involves finding matching in tripartite graphs having three disjoint sets of vertices. Our model encompasses a tripartite graph configuration, where an offline vertex set is an intermediary connecting two opposite sets. The vertices from the latter sets arrive online individually over time. <inline-formula> <tex-math notation="LaTeX">$\epsilon $ </tex-math></inline-formula>-RANKING employs a randomization strategy where offline vertices are assigned random ranks between [0, 1]. This approach exploits the principles of the <inline-formula> <tex-math notation="LaTeX">$\bigg (1-\cfrac {1}{e}\bigg)$ </tex-math></inline-formula>-competitive randomized RANKING algorithm from the domain of online bipartite matching to the more complex context of online trichromatic matching. Furthermore, with numerical experiments, we demonstrate the effectiveness of our algorithm, both with real-world and synthetic data. This work addresses the challenges of online trichromatic matching and sets a benchmark for competitive algorithms within this domain.https://ieeexplore.ieee.org/document/10440337/Randomized online matchingtripartite graph matchingonline trichromatic matchingϵ-RANKING algorithmcompetitive analysis
spellingShingle Komal Pandya
Abyayananda Maiti
Randomized &#x03F5;-RANKING Algorithm for Online Trichromatic Matching
IEEE Access
Randomized online matching
tripartite graph matching
online trichromatic matching
ϵ-RANKING algorithm
competitive analysis
title Randomized &#x03F5;-RANKING Algorithm for Online Trichromatic Matching
title_full Randomized &#x03F5;-RANKING Algorithm for Online Trichromatic Matching
title_fullStr Randomized &#x03F5;-RANKING Algorithm for Online Trichromatic Matching
title_full_unstemmed Randomized &#x03F5;-RANKING Algorithm for Online Trichromatic Matching
title_short Randomized &#x03F5;-RANKING Algorithm for Online Trichromatic Matching
title_sort randomized x03f5 ranking algorithm for online trichromatic matching
topic Randomized online matching
tripartite graph matching
online trichromatic matching
ϵ-RANKING algorithm
competitive analysis
url https://ieeexplore.ieee.org/document/10440337/
work_keys_str_mv AT komalpandya randomizedx03f5rankingalgorithmforonlinetrichromaticmatching
AT abyayanandamaiti randomizedx03f5rankingalgorithmforonlinetrichromaticmatching