Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments
Abstract Genome-wide association (GWAS) and epistatic (GWES) studies along with expression studies in soybean [Glycine max (L.) Merr.] were leveraged to dissect the genetics of Sclerotinia stem rot (SSR) [caused by Sclerotinia sclerotiorum (Lib.) de Bary], a significant fungal disease causing yield...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2017-06-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-017-03695-9 |
_version_ | 1818995046013206528 |
---|---|
author | Tara C. Moellers Arti Singh Jiaoping Zhang Jae Brungardt Mehdi Kabbage Daren S. Mueller Craig R. Grau Ashish Ranjan Damon L. Smith R. V. Chowda-Reddy Asheesh K. Singh |
author_facet | Tara C. Moellers Arti Singh Jiaoping Zhang Jae Brungardt Mehdi Kabbage Daren S. Mueller Craig R. Grau Ashish Ranjan Damon L. Smith R. V. Chowda-Reddy Asheesh K. Singh |
author_sort | Tara C. Moellers |
collection | DOAJ |
description | Abstract Genome-wide association (GWAS) and epistatic (GWES) studies along with expression studies in soybean [Glycine max (L.) Merr.] were leveraged to dissect the genetics of Sclerotinia stem rot (SSR) [caused by Sclerotinia sclerotiorum (Lib.) de Bary], a significant fungal disease causing yield and quality losses. A large association panel of 466 diverse plant introduction accessions were phenotyped in multiple field and controlled environments to: (1) discover sources of resistance, (2) identify SNPs associated with resistance, and (3) determine putative candidate genes to elucidate the mode of resistance. We report 58 significant main effect loci and 24 significant epistatic interactions associated with SSR resistance, with candidate genes involved in a wide range of processes including cell wall structure, hormone signaling, and sugar allocation related to plant immunity, revealing the complex nature of SSR resistance. Putative candidate genes [for example, PHYTOALEXIN DEFFICIENT 4 (PAD4), ETHYLENE-INSENSITIVE 3-LIKE 1 (EIL3), and ETHYLENE RESPONSE FACTOR 1 (ERF1)] clustered into salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways suggest the involvement of a complex hormonal network typically activated by both necrotrophic (ET/JA) and biotrophic (SA) pathogens supporting that S. sclerotiorum is a hemibiotrophic plant pathogen. |
first_indexed | 2024-12-20T21:07:37Z |
format | Article |
id | doaj.art-24adc21b43ae44879012092968dd3167 |
institution | Directory Open Access Journal |
issn | 2045-2322 |
language | English |
last_indexed | 2024-12-20T21:07:37Z |
publishDate | 2017-06-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj.art-24adc21b43ae44879012092968dd31672022-12-21T19:26:34ZengNature PortfolioScientific Reports2045-23222017-06-017111310.1038/s41598-017-03695-9Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environmentsTara C. Moellers0Arti Singh1Jiaoping Zhang2Jae Brungardt3Mehdi Kabbage4Daren S. Mueller5Craig R. Grau6Ashish Ranjan7Damon L. Smith8R. V. Chowda-Reddy9Asheesh K. Singh10Department of Agronomy, Iowa State UniversityDepartment of Agronomy, Iowa State UniversityDepartment of Agronomy, Iowa State UniversityDepartment of Agronomy, Iowa State UniversityDepartment of Plant Pathology, University of Wisconsin-MadisonDepartment of Plant Pathology, Iowa State UniversityDepartment of Plant Pathology, University of Wisconsin-MadisonDepartment of Plant Pathology, University of Wisconsin-MadisonDepartment of Plant Pathology, University of Wisconsin-MadisonDepartment of Agronomy, Iowa State UniversityDepartment of Agronomy, Iowa State UniversityAbstract Genome-wide association (GWAS) and epistatic (GWES) studies along with expression studies in soybean [Glycine max (L.) Merr.] were leveraged to dissect the genetics of Sclerotinia stem rot (SSR) [caused by Sclerotinia sclerotiorum (Lib.) de Bary], a significant fungal disease causing yield and quality losses. A large association panel of 466 diverse plant introduction accessions were phenotyped in multiple field and controlled environments to: (1) discover sources of resistance, (2) identify SNPs associated with resistance, and (3) determine putative candidate genes to elucidate the mode of resistance. We report 58 significant main effect loci and 24 significant epistatic interactions associated with SSR resistance, with candidate genes involved in a wide range of processes including cell wall structure, hormone signaling, and sugar allocation related to plant immunity, revealing the complex nature of SSR resistance. Putative candidate genes [for example, PHYTOALEXIN DEFFICIENT 4 (PAD4), ETHYLENE-INSENSITIVE 3-LIKE 1 (EIL3), and ETHYLENE RESPONSE FACTOR 1 (ERF1)] clustered into salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways suggest the involvement of a complex hormonal network typically activated by both necrotrophic (ET/JA) and biotrophic (SA) pathogens supporting that S. sclerotiorum is a hemibiotrophic plant pathogen.https://doi.org/10.1038/s41598-017-03695-9 |
spellingShingle | Tara C. Moellers Arti Singh Jiaoping Zhang Jae Brungardt Mehdi Kabbage Daren S. Mueller Craig R. Grau Ashish Ranjan Damon L. Smith R. V. Chowda-Reddy Asheesh K. Singh Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments Scientific Reports |
title | Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments |
title_full | Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments |
title_fullStr | Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments |
title_full_unstemmed | Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments |
title_short | Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments |
title_sort | main and epistatic loci studies in soybean for sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi environments |
url | https://doi.org/10.1038/s41598-017-03695-9 |
work_keys_str_mv | AT taracmoellers mainandepistaticlocistudiesinsoybeanforsclerotiniasclerotiorumresistancerevealmultiplemodesofresistanceinmultienvironments AT artisingh mainandepistaticlocistudiesinsoybeanforsclerotiniasclerotiorumresistancerevealmultiplemodesofresistanceinmultienvironments AT jiaopingzhang mainandepistaticlocistudiesinsoybeanforsclerotiniasclerotiorumresistancerevealmultiplemodesofresistanceinmultienvironments AT jaebrungardt mainandepistaticlocistudiesinsoybeanforsclerotiniasclerotiorumresistancerevealmultiplemodesofresistanceinmultienvironments AT mehdikabbage mainandepistaticlocistudiesinsoybeanforsclerotiniasclerotiorumresistancerevealmultiplemodesofresistanceinmultienvironments AT darensmueller mainandepistaticlocistudiesinsoybeanforsclerotiniasclerotiorumresistancerevealmultiplemodesofresistanceinmultienvironments AT craigrgrau mainandepistaticlocistudiesinsoybeanforsclerotiniasclerotiorumresistancerevealmultiplemodesofresistanceinmultienvironments AT ashishranjan mainandepistaticlocistudiesinsoybeanforsclerotiniasclerotiorumresistancerevealmultiplemodesofresistanceinmultienvironments AT damonlsmith mainandepistaticlocistudiesinsoybeanforsclerotiniasclerotiorumresistancerevealmultiplemodesofresistanceinmultienvironments AT rvchowdareddy mainandepistaticlocistudiesinsoybeanforsclerotiniasclerotiorumresistancerevealmultiplemodesofresistanceinmultienvironments AT asheeshksingh mainandepistaticlocistudiesinsoybeanforsclerotiniasclerotiorumresistancerevealmultiplemodesofresistanceinmultienvironments |