Nitrogen-vacancy magnetometry of CrSBr by diamond membrane transfer

Abstract Magnetic imaging using nitrogen-vacancy (NV) spins in diamonds is a powerful technique for acquiring quantitative information about sub-micron scale magnetic order. A major challenge for its application in the research on two-dimensional (2D) magnets is the positioning of the NV centers at...

Full description

Bibliographic Details
Main Authors: Talieh S. Ghiasi, Michael Borst, Samer Kurdi, Brecht G. Simon, Iacopo Bertelli, Carla Boix-Constant, Samuel Mañas-Valero, Herre S. J. van der Zant, Toeno van der Sar
Format: Article
Language:English
Published: Nature Portfolio 2023-09-01
Series:npj 2D Materials and Applications
Online Access:https://doi.org/10.1038/s41699-023-00423-y
Description
Summary:Abstract Magnetic imaging using nitrogen-vacancy (NV) spins in diamonds is a powerful technique for acquiring quantitative information about sub-micron scale magnetic order. A major challenge for its application in the research on two-dimensional (2D) magnets is the positioning of the NV centers at a well-defined, nanoscale distance to the target material required for detecting the small magnetic fields generated by magnetic monolayers. Here, we develop a diamond “dry-transfer” technique akin to the state-of-the-art 2D-materials assembly methods and use it to place a diamond micro-membrane in direct contact with the 2D interlayer antiferromagnet CrSBr. We harness the resulting NV-sample proximity to spatially resolve the magnetic stray fields generated by the CrSBr, present only where the CrSBr thickness changes by an odd number of layers. From the magnetic stray field of a single uncompensated ferromagnetic layer in the CrSBr, we extract a monolayer magnetization of M CSB = 0.46(2) T, without the need for exfoliation of monolayer crystals or applying large external magnetic fields. The ability to deterministically place NV-ensemble sensors into contact with target materials and detect ferromagnetic monolayer magnetizations paves the way for quantitative analysis of a wide range of 2D magnets assembled on arbitrary target substrates.
ISSN:2397-7132