A Critical Review of CFD Modeling Approaches for Darrieus Turbines: Assessing Discrepancies in Power Coefficient Estimation and Wake Vortex Development

This critical review delves into the impact of Computational Fluid Dynamics (CFD) modeling techniques, specifically 2D, 2.5D, and 3D simulations, on the performance and vortex dynamics of Darrieus turbines. The central aim is to dissect the disparities apparent in numerical outcomes derived from the...

Full description

Bibliographic Details
Main Authors: Saïf ed-Dîn Fertahi, Tarik Belhadad, Anass Kanna, Abderrahim Samaouali, Imad Kadiri, Ernesto Benini
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/8/9/242
_version_ 1797580066633285632
author Saïf ed-Dîn Fertahi
Tarik Belhadad
Anass Kanna
Abderrahim Samaouali
Imad Kadiri
Ernesto Benini
author_facet Saïf ed-Dîn Fertahi
Tarik Belhadad
Anass Kanna
Abderrahim Samaouali
Imad Kadiri
Ernesto Benini
author_sort Saïf ed-Dîn Fertahi
collection DOAJ
description This critical review delves into the impact of Computational Fluid Dynamics (CFD) modeling techniques, specifically 2D, 2.5D, and 3D simulations, on the performance and vortex dynamics of Darrieus turbines. The central aim is to dissect the disparities apparent in numerical outcomes derived from these simulation methodologies when assessing the power coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>p</mi></msub></semantics></math></inline-formula>) within a defined velocity ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>) range. The examination delves into the prevalent turbulence models shaping <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>p</mi></msub></semantics></math></inline-formula> values, and offers insightful visual aids to expound upon their influence. Furthermore, the review underscores the predominant rationale behind the adoption of 2D CFD modeling, attributed to its computationally efficient nature vis-à-vis the more intricate 2.5D or 3D approaches, particularly when gauging the turbine’s performance within the designated <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> realm. Moreover, the study meticulously curates a compendium of findings from an expansive collection of over 250 published articles. These findings encapsulate the evolution of pivotal parameters, including <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>p</mi></msub></semantics></math></inline-formula>, moment coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>m</mi></msub></semantics></math></inline-formula>), lift coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>l</mi></msub></semantics></math></inline-formula>), and drag coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>d</mi></msub></semantics></math></inline-formula>), as well as the intricate portrayal of velocity contours, pressure distributions, vorticity patterns, turbulent kinetic energy dynamics, streamlines, and Q-criterion analyses of vorticity. An additional focal point of the review revolves around the discernment of executing 2D parametric investigations to optimize Darrieus turbine efficacy. This practice persists despite the emergence of turbulent flow structures induced by geometric modifications. Notably, the limitations inherent to the 2D methodology are vividly exemplified through compelling CFD contour representations interspersed throughout the review. Vitally, the review underscores that gauging the accuracy and validation of CFD models based solely on the comparison of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>p</mi></msub></semantics></math></inline-formula> values against experimental data falls short. Instead, the validation of CFD models rests on time-averaged <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>p</mi></msub></semantics></math></inline-formula> values, thereby underscoring the need to account for the intricate vortex patterns in the turbine’s wake—a facet that diverges significantly between 2D and 3D simulations. In a bid to showcase the extant disparities in CFD modeling of Darrieus turbine behavior and facilitate the selection of the most judicious CFD modeling approach, the review diligently presents and appraises outcomes from diverse research endeavors published across esteemed scientific journals.
first_indexed 2024-03-10T22:46:03Z
format Article
id doaj.art-24be1f6b77f0407bbbe1acefb4cb067f
institution Directory Open Access Journal
issn 2311-5521
language English
last_indexed 2024-03-10T22:46:03Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Fluids
spelling doaj.art-24be1f6b77f0407bbbe1acefb4cb067f2023-11-19T10:41:15ZengMDPI AGFluids2311-55212023-08-018924210.3390/fluids8090242A Critical Review of CFD Modeling Approaches for Darrieus Turbines: Assessing Discrepancies in Power Coefficient Estimation and Wake Vortex DevelopmentSaïf ed-Dîn Fertahi0Tarik Belhadad1Anass Kanna2Abderrahim Samaouali3Imad Kadiri4Ernesto Benini5“Thermodynamics and Energy” Research Team, Energy Research Center, Physics Department, Faculty of Science, Mohammed V University in Rabat, 4 Avenue Ibn Batouta, Rabat B.P. 1014, MoroccoEngineering Sciences Laboratory, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez (USMBA), Taza B.P. 1223, MoroccoEngineering Sciences Laboratory, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez (USMBA), Taza B.P. 1223, Morocco“Thermodynamics and Energy” Research Team, Energy Research Center, Physics Department, Faculty of Science, Mohammed V University in Rabat, 4 Avenue Ibn Batouta, Rabat B.P. 1014, MoroccoLaboratoire d’Etude des Matériaux Avancés et Applications (LEM2A), Ecole Supérieure de Technologie de Meknès, Université Moulay Ismail (UMI), Km 5, Route d’Agouray, N6, Meknes 50040, MoroccoDepartment of Industrial Engineering, University of Padova, Via Venezia, 1, 35131 Padova, ItalyThis critical review delves into the impact of Computational Fluid Dynamics (CFD) modeling techniques, specifically 2D, 2.5D, and 3D simulations, on the performance and vortex dynamics of Darrieus turbines. The central aim is to dissect the disparities apparent in numerical outcomes derived from these simulation methodologies when assessing the power coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>p</mi></msub></semantics></math></inline-formula>) within a defined velocity ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>) range. The examination delves into the prevalent turbulence models shaping <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>p</mi></msub></semantics></math></inline-formula> values, and offers insightful visual aids to expound upon their influence. Furthermore, the review underscores the predominant rationale behind the adoption of 2D CFD modeling, attributed to its computationally efficient nature vis-à-vis the more intricate 2.5D or 3D approaches, particularly when gauging the turbine’s performance within the designated <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> realm. Moreover, the study meticulously curates a compendium of findings from an expansive collection of over 250 published articles. These findings encapsulate the evolution of pivotal parameters, including <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>p</mi></msub></semantics></math></inline-formula>, moment coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>m</mi></msub></semantics></math></inline-formula>), lift coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>l</mi></msub></semantics></math></inline-formula>), and drag coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>d</mi></msub></semantics></math></inline-formula>), as well as the intricate portrayal of velocity contours, pressure distributions, vorticity patterns, turbulent kinetic energy dynamics, streamlines, and Q-criterion analyses of vorticity. An additional focal point of the review revolves around the discernment of executing 2D parametric investigations to optimize Darrieus turbine efficacy. This practice persists despite the emergence of turbulent flow structures induced by geometric modifications. Notably, the limitations inherent to the 2D methodology are vividly exemplified through compelling CFD contour representations interspersed throughout the review. Vitally, the review underscores that gauging the accuracy and validation of CFD models based solely on the comparison of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>p</mi></msub></semantics></math></inline-formula> values against experimental data falls short. Instead, the validation of CFD models rests on time-averaged <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>p</mi></msub></semantics></math></inline-formula> values, thereby underscoring the need to account for the intricate vortex patterns in the turbine’s wake—a facet that diverges significantly between 2D and 3D simulations. In a bid to showcase the extant disparities in CFD modeling of Darrieus turbine behavior and facilitate the selection of the most judicious CFD modeling approach, the review diligently presents and appraises outcomes from diverse research endeavors published across esteemed scientific journals.https://www.mdpi.com/2311-5521/8/9/242Darrieus turbineComputational Fluid Dynamics (CFD)power coefficientvortex structuresturbulence modelsparametric studies
spellingShingle Saïf ed-Dîn Fertahi
Tarik Belhadad
Anass Kanna
Abderrahim Samaouali
Imad Kadiri
Ernesto Benini
A Critical Review of CFD Modeling Approaches for Darrieus Turbines: Assessing Discrepancies in Power Coefficient Estimation and Wake Vortex Development
Fluids
Darrieus turbine
Computational Fluid Dynamics (CFD)
power coefficient
vortex structures
turbulence models
parametric studies
title A Critical Review of CFD Modeling Approaches for Darrieus Turbines: Assessing Discrepancies in Power Coefficient Estimation and Wake Vortex Development
title_full A Critical Review of CFD Modeling Approaches for Darrieus Turbines: Assessing Discrepancies in Power Coefficient Estimation and Wake Vortex Development
title_fullStr A Critical Review of CFD Modeling Approaches for Darrieus Turbines: Assessing Discrepancies in Power Coefficient Estimation and Wake Vortex Development
title_full_unstemmed A Critical Review of CFD Modeling Approaches for Darrieus Turbines: Assessing Discrepancies in Power Coefficient Estimation and Wake Vortex Development
title_short A Critical Review of CFD Modeling Approaches for Darrieus Turbines: Assessing Discrepancies in Power Coefficient Estimation and Wake Vortex Development
title_sort critical review of cfd modeling approaches for darrieus turbines assessing discrepancies in power coefficient estimation and wake vortex development
topic Darrieus turbine
Computational Fluid Dynamics (CFD)
power coefficient
vortex structures
turbulence models
parametric studies
url https://www.mdpi.com/2311-5521/8/9/242
work_keys_str_mv AT saifeddinfertahi acriticalreviewofcfdmodelingapproachesfordarrieusturbinesassessingdiscrepanciesinpowercoefficientestimationandwakevortexdevelopment
AT tarikbelhadad acriticalreviewofcfdmodelingapproachesfordarrieusturbinesassessingdiscrepanciesinpowercoefficientestimationandwakevortexdevelopment
AT anasskanna acriticalreviewofcfdmodelingapproachesfordarrieusturbinesassessingdiscrepanciesinpowercoefficientestimationandwakevortexdevelopment
AT abderrahimsamaouali acriticalreviewofcfdmodelingapproachesfordarrieusturbinesassessingdiscrepanciesinpowercoefficientestimationandwakevortexdevelopment
AT imadkadiri acriticalreviewofcfdmodelingapproachesfordarrieusturbinesassessingdiscrepanciesinpowercoefficientestimationandwakevortexdevelopment
AT ernestobenini acriticalreviewofcfdmodelingapproachesfordarrieusturbinesassessingdiscrepanciesinpowercoefficientestimationandwakevortexdevelopment
AT saifeddinfertahi criticalreviewofcfdmodelingapproachesfordarrieusturbinesassessingdiscrepanciesinpowercoefficientestimationandwakevortexdevelopment
AT tarikbelhadad criticalreviewofcfdmodelingapproachesfordarrieusturbinesassessingdiscrepanciesinpowercoefficientestimationandwakevortexdevelopment
AT anasskanna criticalreviewofcfdmodelingapproachesfordarrieusturbinesassessingdiscrepanciesinpowercoefficientestimationandwakevortexdevelopment
AT abderrahimsamaouali criticalreviewofcfdmodelingapproachesfordarrieusturbinesassessingdiscrepanciesinpowercoefficientestimationandwakevortexdevelopment
AT imadkadiri criticalreviewofcfdmodelingapproachesfordarrieusturbinesassessingdiscrepanciesinpowercoefficientestimationandwakevortexdevelopment
AT ernestobenini criticalreviewofcfdmodelingapproachesfordarrieusturbinesassessingdiscrepanciesinpowercoefficientestimationandwakevortexdevelopment