Trisodium citrate as a potential and eco-friendly corrosion inhibitor of copper in potable water

In this work, the mixture of trisodium cittrate and Zn2+ was used as binary (hetero type) inhibitor for corrosion inhibition of copper metal in potable water. The binary inhibitor system (Zn2+ and trisodium citrate) was used to form hydrophobic surfaces on copper submerged in potable water. Water co...

Full description

Bibliographic Details
Main Authors: Ramasamy Sudhakaran, Thiagarajan Deepa, Munusamy Thirumavalavan, Sharmila Queenthy Sabarimuthu, Sellamuthu Babu, Thayuman Asokan, Pandian Bothi Raja, Natarajan Arumugam, Karthikeyan Perumal, Sinouvassane Djearamane, Lai-Hock Tey, Saminathan Kayarohanam
Format: Article
Language:English
Published: Elsevier 2023-11-01
Series:Journal of King Saud University: Science
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1018364723003695
Description
Summary:In this work, the mixture of trisodium cittrate and Zn2+ was used as binary (hetero type) inhibitor for corrosion inhibition of copper metal in potable water. The binary inhibitor system (Zn2+ and trisodium citrate) was used to form hydrophobic surfaces on copper submerged in potable water. Water contact angle (WCA) was found to be 155°4° when the inhibitor was present, whereas it was 84°2° when there was no inhibitor. These observations suggested the development of superhydrophobic layer on the surface of copper in drinkable water. Electrochemical impedance spectroscopy (EIS – AC mode), and potentiodynamic polarization (DC mode) experiments conveyed that the copper surface could be protected by utilizing the mixture of trisodium citrate and Zn2+ in potable water. The morphological studies including SEM (coupled with EDX), AFM, and WCA were evidenced the formulation of a hetero-type inhibitor for the corrosion inhibition of copper in potable water. In this study, the decline in the double-layer capacitance and the rise in the charge transfer resistance were due to the adsorption of inhibitor confirming the development of protective layer, which EIS, SEM, EDX, AFM, and WCA studies also supported. Thus, there was a synergism observed between TSC and Zn2+, and the formulation consisting of TSC and Zn2+ provided 83% of inhibition efficiency (IEp). So, it was suggested that the approach reported in this study could be a simple method for obtaining the superhydrophobic copper surface.
ISSN:1018-3647