Aerosol measurements with a shipborne Sun–sky–lunar photometer and collocated multiwavelength Raman polarization lidar over the Atlantic Ocean

<p>A shipborne Sun–sky–lunar photometer of type CE318-T was tested during two trans-Atlantic cruises aboard the German research vessel <i>Polarstern</i> from 54<span class="inline-formula"><sup>∘</sup></span>&thinsp;N to 54<span class="...

Full description

Bibliographic Details
Main Authors: Z. Yin, A. Ansmann, H. Baars, P. Seifert, R. Engelmann, M. Radenz, C. Jimenez, A. Herzog, K. Ohneiser, K. Hanbuch, L. Blarel, P. Goloub, G. Dubois, S. Victori, F. Maupin
Format: Article
Language:English
Published: Copernicus Publications 2019-10-01
Series:Atmospheric Measurement Techniques
Online Access:https://www.atmos-meas-tech.net/12/5685/2019/amt-12-5685-2019.pdf
_version_ 1818159046126993408
author Z. Yin
Z. Yin
Z. Yin
A. Ansmann
H. Baars
P. Seifert
R. Engelmann
M. Radenz
C. Jimenez
A. Herzog
K. Ohneiser
K. Hanbuch
L. Blarel
P. Goloub
G. Dubois
S. Victori
F. Maupin
author_facet Z. Yin
Z. Yin
Z. Yin
A. Ansmann
H. Baars
P. Seifert
R. Engelmann
M. Radenz
C. Jimenez
A. Herzog
K. Ohneiser
K. Hanbuch
L. Blarel
P. Goloub
G. Dubois
S. Victori
F. Maupin
author_sort Z. Yin
collection DOAJ
description <p>A shipborne Sun–sky–lunar photometer of type CE318-T was tested during two trans-Atlantic cruises aboard the German research vessel <i>Polarstern</i> from 54<span class="inline-formula"><sup>∘</sup></span>&thinsp;N to 54<span class="inline-formula"><sup>∘</sup></span>&thinsp;S in May/June and December 2018. The continuous observations of the motion-stabilized shipborne CE318-T enabled the first-time observation of a full diurnal cycle of aerosol optical depth (AOD) and column-mean Ångström coefficient of a mixed dust–smoke episode. The latitudinal distribution of the AOD from the shipborne CE318-T, Raman lidar and MICROTOPS II shows the same trend with highest values in the dust belt from 0 to 20<span class="inline-formula"><sup>∘</sup></span>&thinsp;N and overall low values in the Southern Hemisphere. The linear-regression coefficients of determination between MICROTOPS II and the CE318-T were 0.988, 0.987, 0.994 and 0.994 for AODs at 380, 440, 500 and 870&thinsp;nm and 0.896 for the Ångström exponent at 440–870&thinsp;nm. The root-mean-squared differences of AOD at 380, 440, 500 and 870&thinsp;nm were 0.015, 0.013, 0.010 and 0.009, respectively.</p>
first_indexed 2024-12-11T15:39:45Z
format Article
id doaj.art-24cc183622ba4dd6a9534ef750369537
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-12-11T15:39:45Z
publishDate 2019-10-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-24cc183622ba4dd6a9534ef7503695372022-12-22T00:59:50ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482019-10-01125685569810.5194/amt-12-5685-2019Aerosol measurements with a shipborne Sun–sky–lunar photometer and collocated multiwavelength Raman polarization lidar over the Atlantic OceanZ. Yin0Z. Yin1Z. Yin2A. Ansmann3H. Baars4P. Seifert5R. Engelmann6M. Radenz7C. Jimenez8A. Herzog9K. Ohneiser10K. Hanbuch11L. Blarel12P. Goloub13G. Dubois14S. Victori15F. Maupin16Leibniz Institute for Tropospheric Research, Permoserstraße 15, Leipzig, GermanySchool of Electronic Information, Wuhan University, Wuhan, ChinaKey Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, ChinaLeibniz Institute for Tropospheric Research, Permoserstraße 15, Leipzig, GermanyLeibniz Institute for Tropospheric Research, Permoserstraße 15, Leipzig, GermanyLeibniz Institute for Tropospheric Research, Permoserstraße 15, Leipzig, GermanyLeibniz Institute for Tropospheric Research, Permoserstraße 15, Leipzig, GermanyLeibniz Institute for Tropospheric Research, Permoserstraße 15, Leipzig, GermanyLeibniz Institute for Tropospheric Research, Permoserstraße 15, Leipzig, GermanyLeibniz Institute for Tropospheric Research, Permoserstraße 15, Leipzig, GermanyLeibniz Institute for Tropospheric Research, Permoserstraße 15, Leipzig, GermanyLeibniz Institute for Tropospheric Research, Permoserstraße 15, Leipzig, GermanyLaboratoire d'Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve-d'Ascq, FranceLaboratoire d'Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve-d'Ascq, FranceLaboratoire d'Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve-d'Ascq, FranceR&D Department, Cimel Electronique, Paris, FranceR&D Department, Cimel Electronique, Paris, France<p>A shipborne Sun–sky–lunar photometer of type CE318-T was tested during two trans-Atlantic cruises aboard the German research vessel <i>Polarstern</i> from 54<span class="inline-formula"><sup>∘</sup></span>&thinsp;N to 54<span class="inline-formula"><sup>∘</sup></span>&thinsp;S in May/June and December 2018. The continuous observations of the motion-stabilized shipborne CE318-T enabled the first-time observation of a full diurnal cycle of aerosol optical depth (AOD) and column-mean Ångström coefficient of a mixed dust–smoke episode. The latitudinal distribution of the AOD from the shipborne CE318-T, Raman lidar and MICROTOPS II shows the same trend with highest values in the dust belt from 0 to 20<span class="inline-formula"><sup>∘</sup></span>&thinsp;N and overall low values in the Southern Hemisphere. The linear-regression coefficients of determination between MICROTOPS II and the CE318-T were 0.988, 0.987, 0.994 and 0.994 for AODs at 380, 440, 500 and 870&thinsp;nm and 0.896 for the Ångström exponent at 440–870&thinsp;nm. The root-mean-squared differences of AOD at 380, 440, 500 and 870&thinsp;nm were 0.015, 0.013, 0.010 and 0.009, respectively.</p>https://www.atmos-meas-tech.net/12/5685/2019/amt-12-5685-2019.pdf
spellingShingle Z. Yin
Z. Yin
Z. Yin
A. Ansmann
H. Baars
P. Seifert
R. Engelmann
M. Radenz
C. Jimenez
A. Herzog
K. Ohneiser
K. Hanbuch
L. Blarel
P. Goloub
G. Dubois
S. Victori
F. Maupin
Aerosol measurements with a shipborne Sun–sky–lunar photometer and collocated multiwavelength Raman polarization lidar over the Atlantic Ocean
Atmospheric Measurement Techniques
title Aerosol measurements with a shipborne Sun–sky–lunar photometer and collocated multiwavelength Raman polarization lidar over the Atlantic Ocean
title_full Aerosol measurements with a shipborne Sun–sky–lunar photometer and collocated multiwavelength Raman polarization lidar over the Atlantic Ocean
title_fullStr Aerosol measurements with a shipborne Sun–sky–lunar photometer and collocated multiwavelength Raman polarization lidar over the Atlantic Ocean
title_full_unstemmed Aerosol measurements with a shipborne Sun–sky–lunar photometer and collocated multiwavelength Raman polarization lidar over the Atlantic Ocean
title_short Aerosol measurements with a shipborne Sun–sky–lunar photometer and collocated multiwavelength Raman polarization lidar over the Atlantic Ocean
title_sort aerosol measurements with a shipborne sun sky lunar photometer and collocated multiwavelength raman polarization lidar over the atlantic ocean
url https://www.atmos-meas-tech.net/12/5685/2019/amt-12-5685-2019.pdf
work_keys_str_mv AT zyin aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT zyin aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT zyin aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT aansmann aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT hbaars aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT pseifert aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT rengelmann aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT mradenz aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT cjimenez aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT aherzog aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT kohneiser aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT khanbuch aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT lblarel aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT pgoloub aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT gdubois aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT svictori aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean
AT fmaupin aerosolmeasurementswithashipbornesunskylunarphotometerandcollocatedmultiwavelengthramanpolarizationlidarovertheatlanticocean