Curcumin-Loaded Microspheres Are Effective in Preventing Oxidative Stress and Intestinal Inflammatory Abnormalities in Experimental Ulcerative Colitis in Rats

Curcumin’s role in the treatment of ulcerative colitis (UC) has been proven by numerous studies, but its preventive administration, with the aim of reducing the remission episodes that are characteristic of this disease, must be further investigated. This study investigates the effects of a novel cu...

Full description

Bibliographic Details
Main Authors: Dana Hales, Dana-Maria Muntean, Maria Adriana Neag, Béla Kiss, Maria-Georgia Ștefan, Lucia Ruxandra Tefas, Ioan Tomuță, Alina Sesărman, Ioana-Adela Rațiu, Alina Porfire
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/27/17/5680
Description
Summary:Curcumin’s role in the treatment of ulcerative colitis (UC) has been proven by numerous studies, but its preventive administration, with the aim of reducing the remission episodes that are characteristic of this disease, must be further investigated. This study investigates the effects of a novel curcumin-loaded polymeric microparticulate oral-drug-delivery system for colon targeting (Col-CUR-MPs) in an experimental model of UC. Male Wistar rats (n = 40) were divided into five groups (n = 8), which were treated daily by oral gavage for seven days with a 2% aqueous solution of carboxymethylcellulose sodium salt (CMCNa) (healthy and disease control), free curcumin powder (reference), Col-CUR-MPs (test) and prednisolone (reference) prior to UC induction by the intrarectal administration of acetic acid (AA), followed by animal sacrification and blood and colonic samples’ collection on the eighth day. Col-CUR-MPs exhibited an important preventive effect in the severity degree of oxidative stress that resulted following AA intrarectal administration, which was proved by the highest catalase (CAT) and total antioxidant capacity (TAC) levels and the lowest nitrites/nitrates (NOx), total oxidative status (TOS) and oxidative stress index (OSI) levels. Biochemical parameter analysis was supported by histopathological assessment, confirming the significant anti-inflammatory and antioxidant effects of this novel colon-specific delivery system in AA-induced rat models of UC. Thus, this study offers encouraging perspectives regarding the preventive administration of curcumin in the form of a drug delivery system for colon targeting.
ISSN:1420-3049