A multi-criteria framework for disease surveillance site selection: case study for Plasmodium knowlesi malaria in Indonesia

Disease surveillance aims to collect data at different times or locations, to assist public health authorities to respond appropriately. Surveillance of the simian malaria parasite, Plasmodium knowlesi, is sparse in some endemic areas and the spatial extent of transmission is uncertain. Zoonotic tra...

Full description

Bibliographic Details
Main Authors: Lucinda E. Harrison, Jennifer A. Flegg, Ruarai Tobin, Inke N. D. Lubis, Rintis Noviyanti, Matthew J. Grigg, Freya M. Shearer, David J. Price
Format: Article
Language:English
Published: The Royal Society 2024-01-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/10.1098/rsos.230641
_version_ 1827385972167278592
author Lucinda E. Harrison
Jennifer A. Flegg
Ruarai Tobin
Inke N. D. Lubis
Rintis Noviyanti
Matthew J. Grigg
Freya M. Shearer
David J. Price
author_facet Lucinda E. Harrison
Jennifer A. Flegg
Ruarai Tobin
Inke N. D. Lubis
Rintis Noviyanti
Matthew J. Grigg
Freya M. Shearer
David J. Price
author_sort Lucinda E. Harrison
collection DOAJ
description Disease surveillance aims to collect data at different times or locations, to assist public health authorities to respond appropriately. Surveillance of the simian malaria parasite, Plasmodium knowlesi, is sparse in some endemic areas and the spatial extent of transmission is uncertain. Zoonotic transmission of Plasmodium knowlesi has been demonstrated throughout Southeast Asia and represents a major hurdle to regional malaria elimination efforts. Given an arbitrary spatial prediction of relative disease risk, we develop a flexible framework for surveillance site selection, drawing on principles from multi-criteria decision-making. To demonstrate the utility of our framework, we apply it to the case study of Plasmodium knowlesi malaria surveillance site selection in western Indonesia. We demonstrate how statistical predictions of relative disease risk can be quantitatively incorporated into public health decision-making, with specific application to active human surveillance of zoonotic malaria. This approach can be used in other contexts to extend the utility of modelling outputs.
first_indexed 2024-03-08T15:35:19Z
format Article
id doaj.art-24da0593d01b43fa92f7f42a2d5d6808
institution Directory Open Access Journal
issn 2054-5703
language English
last_indexed 2024-03-08T15:35:19Z
publishDate 2024-01-01
publisher The Royal Society
record_format Article
series Royal Society Open Science
spelling doaj.art-24da0593d01b43fa92f7f42a2d5d68082024-01-10T00:05:55ZengThe Royal SocietyRoyal Society Open Science2054-57032024-01-0111110.1098/rsos.230641A multi-criteria framework for disease surveillance site selection: case study for Plasmodium knowlesi malaria in IndonesiaLucinda E. Harrison0Jennifer A. Flegg1Ruarai Tobin2Inke N. D. Lubis3Rintis Noviyanti4Matthew J. Grigg5Freya M. Shearer6David J. Price7School of Mathematics and Statistics, The University of Melbourne, Melbourne, AustraliaSchool of Mathematics and Statistics, The University of Melbourne, Melbourne, AustraliaMelbourne School of Population and Global Health, The University of Melbourne, Melbourne, AustraliaDepartment of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, IndonesiaEijkman Institute for Infection and Molecular Biology, Jakarta, IndonesiaMenzies School of Health Research and Charles Darwin University, Darwin, AustraliaMelbourne School of Population and Global Health, The University of Melbourne, Melbourne, AustraliaMelbourne School of Population and Global Health, The University of Melbourne, Melbourne, AustraliaDisease surveillance aims to collect data at different times or locations, to assist public health authorities to respond appropriately. Surveillance of the simian malaria parasite, Plasmodium knowlesi, is sparse in some endemic areas and the spatial extent of transmission is uncertain. Zoonotic transmission of Plasmodium knowlesi has been demonstrated throughout Southeast Asia and represents a major hurdle to regional malaria elimination efforts. Given an arbitrary spatial prediction of relative disease risk, we develop a flexible framework for surveillance site selection, drawing on principles from multi-criteria decision-making. To demonstrate the utility of our framework, we apply it to the case study of Plasmodium knowlesi malaria surveillance site selection in western Indonesia. We demonstrate how statistical predictions of relative disease risk can be quantitatively incorporated into public health decision-making, with specific application to active human surveillance of zoonotic malaria. This approach can be used in other contexts to extend the utility of modelling outputs.https://royalsocietypublishing.org/doi/10.1098/rsos.230641geospatial modellingdisease surveillancesite selectionPlasmodium knowlesi malariamulti-criteria decision-making
spellingShingle Lucinda E. Harrison
Jennifer A. Flegg
Ruarai Tobin
Inke N. D. Lubis
Rintis Noviyanti
Matthew J. Grigg
Freya M. Shearer
David J. Price
A multi-criteria framework for disease surveillance site selection: case study for Plasmodium knowlesi malaria in Indonesia
Royal Society Open Science
geospatial modelling
disease surveillance
site selection
Plasmodium knowlesi malaria
multi-criteria decision-making
title A multi-criteria framework for disease surveillance site selection: case study for Plasmodium knowlesi malaria in Indonesia
title_full A multi-criteria framework for disease surveillance site selection: case study for Plasmodium knowlesi malaria in Indonesia
title_fullStr A multi-criteria framework for disease surveillance site selection: case study for Plasmodium knowlesi malaria in Indonesia
title_full_unstemmed A multi-criteria framework for disease surveillance site selection: case study for Plasmodium knowlesi malaria in Indonesia
title_short A multi-criteria framework for disease surveillance site selection: case study for Plasmodium knowlesi malaria in Indonesia
title_sort multi criteria framework for disease surveillance site selection case study for plasmodium knowlesi malaria in indonesia
topic geospatial modelling
disease surveillance
site selection
Plasmodium knowlesi malaria
multi-criteria decision-making
url https://royalsocietypublishing.org/doi/10.1098/rsos.230641
work_keys_str_mv AT lucindaeharrison amulticriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT jenniferaflegg amulticriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT ruaraitobin amulticriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT inkendlubis amulticriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT rintisnoviyanti amulticriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT matthewjgrigg amulticriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT freyamshearer amulticriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT davidjprice amulticriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT lucindaeharrison multicriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT jenniferaflegg multicriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT ruaraitobin multicriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT inkendlubis multicriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT rintisnoviyanti multicriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT matthewjgrigg multicriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT freyamshearer multicriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia
AT davidjprice multicriteriaframeworkfordiseasesurveillancesiteselectioncasestudyforplasmodiumknowlesimalariainindonesia