Beyond the <inline-formula><math display="inline"><semantics><msqrt><mi>N</mi></msqrt></semantics></math></inline-formula>-Limit of the Least Squares Resolution and the Lucky Model

A very simple Gaussian model is used to illustrate an interesting fitting result: a linear growth of the resolution with the number <i>N</i> of detecting layers. This rule is well beyond the well-known rule proportional to <inline-formula><math xmlns="http://www.w3.org/1998...

Full description

Bibliographic Details
Main Authors: Gregorio Landi, Giovanni E. Landi
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Instruments
Subjects:
Online Access:https://www.mdpi.com/2410-390X/6/1/10
_version_ 1797470591173787648
author Gregorio Landi
Giovanni E. Landi
author_facet Gregorio Landi
Giovanni E. Landi
author_sort Gregorio Landi
collection DOAJ
description A very simple Gaussian model is used to illustrate an interesting fitting result: a linear growth of the resolution with the number <i>N</i> of detecting layers. This rule is well beyond the well-known rule proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msqrt><mi>N</mi></msqrt></semantics></math></inline-formula> for the resolution of the usual fits. The effect is obtained with the appropriate form of the variance for each hit (observation). The model reconstructs straight tracks with <i>N</i> parallel detecting layers, the track direction is the selected parameter to test the resolution. The results of the Gaussian model are compared with realistic simulations of silicon micro-strip detectors. These realistic simulations suggest an easy method to select the essential weights for the fit: the lucky model. Preliminary results of the lucky model show an excellent reproduction of the linear growth of the resolution, very similar to that given by realistic simulations. The maximum likelihood evaluations complete this exploration of the growth in resolution.
first_indexed 2024-03-09T19:38:37Z
format Article
id doaj.art-24ef221377ac485ba0ce3bb4a2a7a3e2
institution Directory Open Access Journal
issn 2410-390X
language English
last_indexed 2024-03-09T19:38:37Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Instruments
spelling doaj.art-24ef221377ac485ba0ce3bb4a2a7a3e22023-11-24T01:44:35ZengMDPI AGInstruments2410-390X2022-01-01611010.3390/instruments6010010Beyond the <inline-formula><math display="inline"><semantics><msqrt><mi>N</mi></msqrt></semantics></math></inline-formula>-Limit of the Least Squares Resolution and the Lucky ModelGregorio Landi0Giovanni E. Landi1Dipartimento di Fisica e Astronomia, Universita’ di Firenze and INFN Largo E. Fermi 2 (Arcetri), 50125 Firenze, ItalyArchonVR S.a.g.l., Via Cisieri 3, 6900 Lugano, SwitzerlandA very simple Gaussian model is used to illustrate an interesting fitting result: a linear growth of the resolution with the number <i>N</i> of detecting layers. This rule is well beyond the well-known rule proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msqrt><mi>N</mi></msqrt></semantics></math></inline-formula> for the resolution of the usual fits. The effect is obtained with the appropriate form of the variance for each hit (observation). The model reconstructs straight tracks with <i>N</i> parallel detecting layers, the track direction is the selected parameter to test the resolution. The results of the Gaussian model are compared with realistic simulations of silicon micro-strip detectors. These realistic simulations suggest an easy method to select the essential weights for the fit: the lucky model. Preliminary results of the lucky model show an excellent reproduction of the linear growth of the resolution, very similar to that given by realistic simulations. The maximum likelihood evaluations complete this exploration of the growth in resolution.https://www.mdpi.com/2410-390X/6/1/10least squares methodresolutionposition reconstructioncenter of gravitysilicon micro-strip detectorslucky model
spellingShingle Gregorio Landi
Giovanni E. Landi
Beyond the <inline-formula><math display="inline"><semantics><msqrt><mi>N</mi></msqrt></semantics></math></inline-formula>-Limit of the Least Squares Resolution and the Lucky Model
Instruments
least squares method
resolution
position reconstruction
center of gravity
silicon micro-strip detectors
lucky model
title Beyond the <inline-formula><math display="inline"><semantics><msqrt><mi>N</mi></msqrt></semantics></math></inline-formula>-Limit of the Least Squares Resolution and the Lucky Model
title_full Beyond the <inline-formula><math display="inline"><semantics><msqrt><mi>N</mi></msqrt></semantics></math></inline-formula>-Limit of the Least Squares Resolution and the Lucky Model
title_fullStr Beyond the <inline-formula><math display="inline"><semantics><msqrt><mi>N</mi></msqrt></semantics></math></inline-formula>-Limit of the Least Squares Resolution and the Lucky Model
title_full_unstemmed Beyond the <inline-formula><math display="inline"><semantics><msqrt><mi>N</mi></msqrt></semantics></math></inline-formula>-Limit of the Least Squares Resolution and the Lucky Model
title_short Beyond the <inline-formula><math display="inline"><semantics><msqrt><mi>N</mi></msqrt></semantics></math></inline-formula>-Limit of the Least Squares Resolution and the Lucky Model
title_sort beyond the inline formula math display inline semantics msqrt mi n mi msqrt semantics math inline formula limit of the least squares resolution and the lucky model
topic least squares method
resolution
position reconstruction
center of gravity
silicon micro-strip detectors
lucky model
url https://www.mdpi.com/2410-390X/6/1/10
work_keys_str_mv AT gregoriolandi beyondtheinlineformulamathdisplayinlinesemanticsmsqrtminmimsqrtsemanticsmathinlineformulalimitoftheleastsquaresresolutionandtheluckymodel
AT giovannielandi beyondtheinlineformulamathdisplayinlinesemanticsmsqrtminmimsqrtsemanticsmathinlineformulalimitoftheleastsquaresresolutionandtheluckymodel