Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol

<p>Glyoxal (CHOCHO), the simplest dicarbonyl in the troposphere, is a potential precursor for secondary organic aerosol (SOA) and brown carbon (BrC) affecting air quality and climate. The airborne measurement of CHOCHO concentrations during the KORUS-AQ (KORea–US Air Quality study) campaign in...

Full description

Bibliographic Details
Main Authors: D. Kim, C. Cho, S. Jeong, S. Lee, B. A. Nault, P. Campuzano-Jost, D. A. Day, J. C. Schroder, J. L. Jimenez, R. Volkamer, D. R. Blake, A. Wisthaler, A. Fried, J. P. DiGangi, G. S. Diskin, S. E. Pusede, S. R. Hall, K. Ullmann, L. G. Huey, D. J. Tanner, J. Dibb, C. J. Knote, K.-E. Min
Format: Article
Language:English
Published: Copernicus Publications 2022-01-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/22/805/2022/acp-22-805-2022.pdf
_version_ 1819284651784536064
author D. Kim
D. Kim
D. Kim
C. Cho
C. Cho
S. Jeong
S. Jeong
S. Lee
B. A. Nault
B. A. Nault
P. Campuzano-Jost
D. A. Day
J. C. Schroder
J. C. Schroder
J. L. Jimenez
R. Volkamer
D. R. Blake
A. Wisthaler
A. Wisthaler
A. Fried
J. P. DiGangi
G. S. Diskin
S. E. Pusede
S. R. Hall
K. Ullmann
L. G. Huey
D. J. Tanner
J. Dibb
C. J. Knote
K.-E. Min
author_facet D. Kim
D. Kim
D. Kim
C. Cho
C. Cho
S. Jeong
S. Jeong
S. Lee
B. A. Nault
B. A. Nault
P. Campuzano-Jost
D. A. Day
J. C. Schroder
J. C. Schroder
J. L. Jimenez
R. Volkamer
D. R. Blake
A. Wisthaler
A. Wisthaler
A. Fried
J. P. DiGangi
G. S. Diskin
S. E. Pusede
S. R. Hall
K. Ullmann
L. G. Huey
D. J. Tanner
J. Dibb
C. J. Knote
K.-E. Min
author_sort D. Kim
collection DOAJ
description <p>Glyoxal (CHOCHO), the simplest dicarbonyl in the troposphere, is a potential precursor for secondary organic aerosol (SOA) and brown carbon (BrC) affecting air quality and climate. The airborne measurement of CHOCHO concentrations during the KORUS-AQ (KORea–US Air Quality study) campaign in 2016 enables detailed quantification of loss mechanisms pertaining to SOA formation in the real atmosphere. The production of this molecule was mainly from oxidation of aromatics (59 %) initiated by hydroxyl radical (OH). CHOCHO loss to aerosol was found to be the most important removal path (69 %) and contributed to roughly <span class="inline-formula">∼</span> 20 % (3.7 <span class="inline-formula">µ</span>g sm<span class="inline-formula"><sup>−3</sup></span> ppmv<span class="inline-formula"><sup>−1</sup></span> h<span class="inline-formula"><sup>−1</sup></span>, normalized with excess CO) of SOA growth in the first 6 h in Seoul Metropolitan Area. A reactive uptake coefficient (<span class="inline-formula"><i>γ</i></span>) of <span class="inline-formula">∼</span> 0.008 best represents the loss of CHOCHO by surface uptake during the campaign. To our knowledge, we show the first field observation of aerosol surface-area-dependent (<span class="inline-formula"><i>A</i><sub>surf</sub></span>) CHOCHO uptake, which diverges from the simple surface uptake assumption as <span class="inline-formula"><i>A</i><sub>surf</sub></span> increases in<span id="page806"/> ambient condition. Specifically, under the low (high) aerosol loading, the CHOCHO effective uptake rate coefficient, <span class="inline-formula"><i>k</i><sub>eff,uptake</sub></span>, linearly increases (levels off) with <span class="inline-formula"><i>A</i><sub>surf</sub></span>; thus, the irreversible surface uptake is a reasonable (unreasonable) approximation for simulating CHOCHO loss to aerosol. Dependence on photochemical impact and changes in the chemical and physical aerosol properties “free water”, as well as aerosol viscosity, are discussed as other possible factors influencing CHOCHO uptake rate. Our inferred Henry's law coefficient of CHOCHO, <span class="inline-formula">7.0×10<sup>8</sup></span> M atm<span class="inline-formula"><sup>−1</sup></span>, is <span class="inline-formula">∼</span> 2 orders of magnitude higher than those estimated from salting-in effects constrained by inorganic salts only consistent with laboratory findings that show similar high partitioning into water-soluble organics, which urges more understanding on CHOCHO solubility under real atmospheric conditions.</p>
first_indexed 2024-12-24T01:50:46Z
format Article
id doaj.art-24f60ef7d4104094a62a1beee08c6bd1
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-24T01:50:46Z
publishDate 2022-01-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-24f60ef7d4104094a62a1beee08c6bd12022-12-21T17:21:44ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-01-012280582110.5194/acp-22-805-2022Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosolD. Kim0D. Kim1D. Kim2C. Cho3C. Cho4S. Jeong5S. Jeong6S. Lee7B. A. Nault8B. A. Nault9P. Campuzano-Jost10D. A. Day11J. C. Schroder12J. C. Schroder13J. L. Jimenez14R. Volkamer15D. R. Blake16A. Wisthaler17A. Wisthaler18A. Fried19J. P. DiGangi20G. S. Diskin21S. E. Pusede22S. R. Hall23K. Ullmann24L. G. Huey25D. J. Tanner26J. Dibb27C. J. Knote28K.-E. Min29Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, South KoreaSchool of Environmental Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South KoreaDepartment of Chemistry and CIRES, University of Colorado, Boulder, CO, USASchool of Environmental Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Koreanow at: Troposphere (IEK-8), Institute of Energy and Climate Research, Forschungszentrum Jülich, Jülich, GermanySchool of Environmental Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Koreanow at: Environmental Assessment group, Korea Environment Institute, Sejong, KoreaSchool of Environmental Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South KoreaDepartment of Chemistry and CIRES, University of Colorado, Boulder, CO, USAnow at: Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA, USADepartment of Chemistry and CIRES, University of Colorado, Boulder, CO, USADepartment of Chemistry and CIRES, University of Colorado, Boulder, CO, USADepartment of Chemistry and CIRES, University of Colorado, Boulder, CO, USAnow at: Colorado Department of Public Health and Environment, Denver, CO, USADepartment of Chemistry and CIRES, University of Colorado, Boulder, CO, USADepartment of Chemistry and CIRES, University of Colorado, Boulder, CO, USADepartment of Chemistry, University of California, Irvine, CA, USAInstitute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, AustriaDepartment of Chemistry, University of Oslo, Oslo, NorwayInstitute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USANASA Langley Research Center, Hampton, VA, USANASA Langley Research Center, Hampton, VA, USADepartment of Environmental Sciences, University of Virginia, Charlottesville, VA, USAAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USAAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USASchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USASchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USAEarth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USAModel-Based Environmental Exposure Science, Faculty of Medicine, University of Augsburg, Augsburg, GermanySchool of Environmental Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea<p>Glyoxal (CHOCHO), the simplest dicarbonyl in the troposphere, is a potential precursor for secondary organic aerosol (SOA) and brown carbon (BrC) affecting air quality and climate. The airborne measurement of CHOCHO concentrations during the KORUS-AQ (KORea–US Air Quality study) campaign in 2016 enables detailed quantification of loss mechanisms pertaining to SOA formation in the real atmosphere. The production of this molecule was mainly from oxidation of aromatics (59 %) initiated by hydroxyl radical (OH). CHOCHO loss to aerosol was found to be the most important removal path (69 %) and contributed to roughly <span class="inline-formula">∼</span> 20 % (3.7 <span class="inline-formula">µ</span>g sm<span class="inline-formula"><sup>−3</sup></span> ppmv<span class="inline-formula"><sup>−1</sup></span> h<span class="inline-formula"><sup>−1</sup></span>, normalized with excess CO) of SOA growth in the first 6 h in Seoul Metropolitan Area. A reactive uptake coefficient (<span class="inline-formula"><i>γ</i></span>) of <span class="inline-formula">∼</span> 0.008 best represents the loss of CHOCHO by surface uptake during the campaign. To our knowledge, we show the first field observation of aerosol surface-area-dependent (<span class="inline-formula"><i>A</i><sub>surf</sub></span>) CHOCHO uptake, which diverges from the simple surface uptake assumption as <span class="inline-formula"><i>A</i><sub>surf</sub></span> increases in<span id="page806"/> ambient condition. Specifically, under the low (high) aerosol loading, the CHOCHO effective uptake rate coefficient, <span class="inline-formula"><i>k</i><sub>eff,uptake</sub></span>, linearly increases (levels off) with <span class="inline-formula"><i>A</i><sub>surf</sub></span>; thus, the irreversible surface uptake is a reasonable (unreasonable) approximation for simulating CHOCHO loss to aerosol. Dependence on photochemical impact and changes in the chemical and physical aerosol properties “free water”, as well as aerosol viscosity, are discussed as other possible factors influencing CHOCHO uptake rate. Our inferred Henry's law coefficient of CHOCHO, <span class="inline-formula">7.0×10<sup>8</sup></span> M atm<span class="inline-formula"><sup>−1</sup></span>, is <span class="inline-formula">∼</span> 2 orders of magnitude higher than those estimated from salting-in effects constrained by inorganic salts only consistent with laboratory findings that show similar high partitioning into water-soluble organics, which urges more understanding on CHOCHO solubility under real atmospheric conditions.</p>https://acp.copernicus.org/articles/22/805/2022/acp-22-805-2022.pdf
spellingShingle D. Kim
D. Kim
D. Kim
C. Cho
C. Cho
S. Jeong
S. Jeong
S. Lee
B. A. Nault
B. A. Nault
P. Campuzano-Jost
D. A. Day
J. C. Schroder
J. C. Schroder
J. L. Jimenez
R. Volkamer
D. R. Blake
A. Wisthaler
A. Wisthaler
A. Fried
J. P. DiGangi
G. S. Diskin
S. E. Pusede
S. R. Hall
K. Ullmann
L. G. Huey
D. J. Tanner
J. Dibb
C. J. Knote
K.-E. Min
Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol
Atmospheric Chemistry and Physics
title Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol
title_full Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol
title_fullStr Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol
title_full_unstemmed Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol
title_short Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol
title_sort field observational constraints on the controllers in glyoxal chocho reactive uptake to aerosol
url https://acp.copernicus.org/articles/22/805/2022/acp-22-805-2022.pdf
work_keys_str_mv AT dkim fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT dkim fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT dkim fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT ccho fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT ccho fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT sjeong fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT sjeong fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT slee fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT banault fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT banault fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT pcampuzanojost fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT daday fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT jcschroder fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT jcschroder fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT jljimenez fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT rvolkamer fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT drblake fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT awisthaler fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT awisthaler fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT afried fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT jpdigangi fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT gsdiskin fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT sepusede fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT srhall fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT kullmann fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT lghuey fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT djtanner fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT jdibb fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT cjknote fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol
AT kemin fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol