Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol
<p>Glyoxal (CHOCHO), the simplest dicarbonyl in the troposphere, is a potential precursor for secondary organic aerosol (SOA) and brown carbon (BrC) affecting air quality and climate. The airborne measurement of CHOCHO concentrations during the KORUS-AQ (KORea–US Air Quality study) campaign in...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-01-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/22/805/2022/acp-22-805-2022.pdf |
_version_ | 1819284651784536064 |
---|---|
author | D. Kim D. Kim D. Kim C. Cho C. Cho S. Jeong S. Jeong S. Lee B. A. Nault B. A. Nault P. Campuzano-Jost D. A. Day J. C. Schroder J. C. Schroder J. L. Jimenez R. Volkamer D. R. Blake A. Wisthaler A. Wisthaler A. Fried J. P. DiGangi G. S. Diskin S. E. Pusede S. R. Hall K. Ullmann L. G. Huey D. J. Tanner J. Dibb C. J. Knote K.-E. Min |
author_facet | D. Kim D. Kim D. Kim C. Cho C. Cho S. Jeong S. Jeong S. Lee B. A. Nault B. A. Nault P. Campuzano-Jost D. A. Day J. C. Schroder J. C. Schroder J. L. Jimenez R. Volkamer D. R. Blake A. Wisthaler A. Wisthaler A. Fried J. P. DiGangi G. S. Diskin S. E. Pusede S. R. Hall K. Ullmann L. G. Huey D. J. Tanner J. Dibb C. J. Knote K.-E. Min |
author_sort | D. Kim |
collection | DOAJ |
description | <p>Glyoxal (CHOCHO), the simplest dicarbonyl in the
troposphere, is a potential precursor for secondary organic aerosol (SOA)
and brown carbon (BrC) affecting air quality and climate. The airborne
measurement of CHOCHO concentrations during the KORUS-AQ (KORea–US Air
Quality study) campaign in 2016 enables detailed quantification of loss
mechanisms pertaining to SOA formation in the real atmosphere. The
production of this molecule was mainly from oxidation of aromatics (59 %)
initiated by hydroxyl radical (OH). CHOCHO loss to aerosol was found to be
the most important removal path (69 %) and contributed to roughly
<span class="inline-formula">∼</span> 20 % (3.7 <span class="inline-formula">µ</span>g sm<span class="inline-formula"><sup>−3</sup></span> ppmv<span class="inline-formula"><sup>−1</sup></span> h<span class="inline-formula"><sup>−1</sup></span>,
normalized with excess CO) of SOA growth in the first 6 h in Seoul
Metropolitan Area. A reactive uptake coefficient (<span class="inline-formula"><i>γ</i></span>) of
<span class="inline-formula">∼</span> 0.008 best represents the loss of CHOCHO by surface uptake
during the campaign. To our knowledge, we show the first field observation
of aerosol surface-area-dependent (<span class="inline-formula"><i>A</i><sub>surf</sub></span>) CHOCHO uptake, which diverges
from the simple surface uptake assumption as <span class="inline-formula"><i>A</i><sub>surf</sub></span> increases in<span id="page806"/> ambient
condition. Specifically, under the low (high) aerosol loading, the CHOCHO
effective uptake rate coefficient, <span class="inline-formula"><i>k</i><sub>eff,uptake</sub></span>, linearly increases
(levels off) with <span class="inline-formula"><i>A</i><sub>surf</sub></span>; thus, the irreversible surface uptake is a
reasonable (unreasonable) approximation for simulating CHOCHO loss to
aerosol. Dependence on photochemical impact and changes in the chemical and
physical aerosol properties “free water”, as well as aerosol viscosity,
are discussed as other possible factors influencing CHOCHO uptake rate. Our
inferred Henry's law coefficient of CHOCHO, <span class="inline-formula">7.0×10<sup>8</sup></span> M atm<span class="inline-formula"><sup>−1</sup></span>, is <span class="inline-formula">∼</span> 2 orders of magnitude higher than those
estimated from salting-in effects constrained by inorganic salts only
consistent with laboratory findings that show similar high partitioning into
water-soluble organics, which urges more understanding on CHOCHO solubility
under real atmospheric conditions.</p> |
first_indexed | 2024-12-24T01:50:46Z |
format | Article |
id | doaj.art-24f60ef7d4104094a62a1beee08c6bd1 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-24T01:50:46Z |
publishDate | 2022-01-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-24f60ef7d4104094a62a1beee08c6bd12022-12-21T17:21:44ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-01-012280582110.5194/acp-22-805-2022Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosolD. Kim0D. Kim1D. Kim2C. Cho3C. Cho4S. Jeong5S. Jeong6S. Lee7B. A. Nault8B. A. Nault9P. Campuzano-Jost10D. A. Day11J. C. Schroder12J. C. Schroder13J. L. Jimenez14R. Volkamer15D. R. Blake16A. Wisthaler17A. Wisthaler18A. Fried19J. P. DiGangi20G. S. Diskin21S. E. Pusede22S. R. Hall23K. Ullmann24L. G. Huey25D. J. Tanner26J. Dibb27C. J. Knote28K.-E. Min29Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, South KoreaSchool of Environmental Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South KoreaDepartment of Chemistry and CIRES, University of Colorado, Boulder, CO, USASchool of Environmental Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Koreanow at: Troposphere (IEK-8), Institute of Energy and Climate Research, Forschungszentrum Jülich, Jülich, GermanySchool of Environmental Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Koreanow at: Environmental Assessment group, Korea Environment Institute, Sejong, KoreaSchool of Environmental Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South KoreaDepartment of Chemistry and CIRES, University of Colorado, Boulder, CO, USAnow at: Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, MA, USADepartment of Chemistry and CIRES, University of Colorado, Boulder, CO, USADepartment of Chemistry and CIRES, University of Colorado, Boulder, CO, USADepartment of Chemistry and CIRES, University of Colorado, Boulder, CO, USAnow at: Colorado Department of Public Health and Environment, Denver, CO, USADepartment of Chemistry and CIRES, University of Colorado, Boulder, CO, USADepartment of Chemistry and CIRES, University of Colorado, Boulder, CO, USADepartment of Chemistry, University of California, Irvine, CA, USAInstitute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, AustriaDepartment of Chemistry, University of Oslo, Oslo, NorwayInstitute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USANASA Langley Research Center, Hampton, VA, USANASA Langley Research Center, Hampton, VA, USADepartment of Environmental Sciences, University of Virginia, Charlottesville, VA, USAAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USAAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USASchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USASchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USAEarth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USAModel-Based Environmental Exposure Science, Faculty of Medicine, University of Augsburg, Augsburg, GermanySchool of Environmental Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea<p>Glyoxal (CHOCHO), the simplest dicarbonyl in the troposphere, is a potential precursor for secondary organic aerosol (SOA) and brown carbon (BrC) affecting air quality and climate. The airborne measurement of CHOCHO concentrations during the KORUS-AQ (KORea–US Air Quality study) campaign in 2016 enables detailed quantification of loss mechanisms pertaining to SOA formation in the real atmosphere. The production of this molecule was mainly from oxidation of aromatics (59 %) initiated by hydroxyl radical (OH). CHOCHO loss to aerosol was found to be the most important removal path (69 %) and contributed to roughly <span class="inline-formula">∼</span> 20 % (3.7 <span class="inline-formula">µ</span>g sm<span class="inline-formula"><sup>−3</sup></span> ppmv<span class="inline-formula"><sup>−1</sup></span> h<span class="inline-formula"><sup>−1</sup></span>, normalized with excess CO) of SOA growth in the first 6 h in Seoul Metropolitan Area. A reactive uptake coefficient (<span class="inline-formula"><i>γ</i></span>) of <span class="inline-formula">∼</span> 0.008 best represents the loss of CHOCHO by surface uptake during the campaign. To our knowledge, we show the first field observation of aerosol surface-area-dependent (<span class="inline-formula"><i>A</i><sub>surf</sub></span>) CHOCHO uptake, which diverges from the simple surface uptake assumption as <span class="inline-formula"><i>A</i><sub>surf</sub></span> increases in<span id="page806"/> ambient condition. Specifically, under the low (high) aerosol loading, the CHOCHO effective uptake rate coefficient, <span class="inline-formula"><i>k</i><sub>eff,uptake</sub></span>, linearly increases (levels off) with <span class="inline-formula"><i>A</i><sub>surf</sub></span>; thus, the irreversible surface uptake is a reasonable (unreasonable) approximation for simulating CHOCHO loss to aerosol. Dependence on photochemical impact and changes in the chemical and physical aerosol properties “free water”, as well as aerosol viscosity, are discussed as other possible factors influencing CHOCHO uptake rate. Our inferred Henry's law coefficient of CHOCHO, <span class="inline-formula">7.0×10<sup>8</sup></span> M atm<span class="inline-formula"><sup>−1</sup></span>, is <span class="inline-formula">∼</span> 2 orders of magnitude higher than those estimated from salting-in effects constrained by inorganic salts only consistent with laboratory findings that show similar high partitioning into water-soluble organics, which urges more understanding on CHOCHO solubility under real atmospheric conditions.</p>https://acp.copernicus.org/articles/22/805/2022/acp-22-805-2022.pdf |
spellingShingle | D. Kim D. Kim D. Kim C. Cho C. Cho S. Jeong S. Jeong S. Lee B. A. Nault B. A. Nault P. Campuzano-Jost D. A. Day J. C. Schroder J. C. Schroder J. L. Jimenez R. Volkamer D. R. Blake A. Wisthaler A. Wisthaler A. Fried J. P. DiGangi G. S. Diskin S. E. Pusede S. R. Hall K. Ullmann L. G. Huey D. J. Tanner J. Dibb C. J. Knote K.-E. Min Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol Atmospheric Chemistry and Physics |
title | Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol |
title_full | Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol |
title_fullStr | Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol |
title_full_unstemmed | Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol |
title_short | Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol |
title_sort | field observational constraints on the controllers in glyoxal chocho reactive uptake to aerosol |
url | https://acp.copernicus.org/articles/22/805/2022/acp-22-805-2022.pdf |
work_keys_str_mv | AT dkim fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT dkim fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT dkim fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT ccho fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT ccho fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT sjeong fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT sjeong fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT slee fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT banault fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT banault fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT pcampuzanojost fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT daday fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT jcschroder fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT jcschroder fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT jljimenez fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT rvolkamer fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT drblake fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT awisthaler fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT awisthaler fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT afried fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT jpdigangi fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT gsdiskin fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT sepusede fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT srhall fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT kullmann fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT lghuey fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT djtanner fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT jdibb fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT cjknote fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol AT kemin fieldobservationalconstraintsonthecontrollersinglyoxalchochoreactiveuptaketoaerosol |