Wind Booster Optimization for On-Site Energy Generation Using Vertical-Axis Wind Turbines

Large cities have a significant area of buildings with roofs that are not used most of the time. Vertical-axis wind turbines are suitable for this kind of on-site renewable energy generation. Since wind speeds are not high in these cities, a suitable solution to improve energy generation is to add a...

Full description

Bibliographic Details
Main Authors: Marco A. Moreno-Armendáriz, Carlos A. Duchanoy, Hiram Calvo, Eddy Ibarra-Ontiveros, Jesua S. Salcedo-Castañeda, Michel Ayala-Canseco, Damián García
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/14/4775
Description
Summary:Large cities have a significant area of buildings with roofs that are not used most of the time. Vertical-axis wind turbines are suitable for this kind of on-site renewable energy generation. Since wind speeds are not high in these cities, a suitable solution to improve energy generation is to add a Wind Booster. This paper presents a methodology useful for selecting and optimizing the main components of a Wind Booster. As a case of study, we present this methodology in a Wind Booster for a Vertical Axis Wind Turbine (VAWT) that considers the wind flow’s specific behavior in a particular city. The final Wind Booster design is state of the art and makes use of Computational Fluid Dynamics (CFD) and Design of Experiments (DOE) techniques. We experimented with the conditions of Mexico City, obtaining a 35.23% increase in torque with the optimized Wind Booster configuration. The results obtained show the potential of this methodology to improve the performance of this kind of system. Moreover, since wind behavior is very different in each city, our proposal could be beneficial for researchers looking to implement the best possible wind turbine in their locality.
ISSN:1424-8220