On $L^1$-Matrices with Degenerate Spectrum and Weak Convergence in Associated Weighted Sobolev Spaces

We study the compactness property of the weak convergence in variable Sobolev spaces of the following sequences $\left\{ (A_n,u_n) \in L^1(\Omega; {\mathbb{R}}^{N\times N}) \times W_{A_n}(\Omega; {\Gamma}_D) \right\}$, where the squared symmetric matrices $A\colon \Omega \rightarrow {\mathbb{R}}^{N\...

Full description

Bibliographic Details
Main Authors: P.I. Kogut, T.N. Rudyanova
Format: Article
Language:English
Published: Oles Honchar Dnipro National University 2012-08-01
Series:Vìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Matematika
Subjects:
Online Access:https://vestnmath.dnu.dp.ua/index.php/dumb/article/view/64
Description
Summary:We study the compactness property of the weak convergence in variable Sobolev spaces of the following sequences $\left\{ (A_n,u_n) \in L^1(\Omega; {\mathbb{R}}^{N\times N}) \times W_{A_n}(\Omega; {\Gamma}_D) \right\}$, where the squared symmetric matrices $A\colon \Omega \rightarrow {\mathbb{R}}^{N\times N}$ belong to the Lebesgue space $L^1(\Omega; {\mathbb{R}}^{N\times N})$ and their eigenvalues may vanish on subdomains of $\Omega$ with zero Lebesgue measure.
ISSN:2312-9557
2518-7996