Summary: | Ocean surveillance is one of the important applications of synthetic aperture radar (SAR). Polarimetric SAR provides multi-channel information and shows great potential for monitoring ocean dynamic environments. Oil spills are a form of pollution that can seriously affect the marine ecosystem. Dual-polarimetric SAR systems are usually used for routine ocean surface monitoring. The hybrid dual-pol SAR imaging mode, known as compact polarimetry, can provide more information than the conventional dual-pol imaging modes. However, backscatter measurements of the hybrid dual-pol mode depend on the transmit wave polarization, which results in lacking consistent interpretation for various compact polarimetric (CP) images. In this study, we will explore the capability of different CP modes for oil spill detection and discrimination. Firstly, we introduce the general CP formalism method to formulate an arbitrary CP backscattered wave, such that the target scattering vector is characterized in the same framework for all CP modes. Then, a recently proposed CP decomposition method is investigated to reveal the backscattering properties of oil spills and their look-alikes. Both intensity and polarimetric features are studied to analyze the optimal CP mode for oil spill observation. Spaceborne polarimetric SAR data sets collected over natural oil slicks and experimental biogenic slicks are used to demonstrate the capability of the general CP mode for ocean surface surveillance.
|