Variable selection in generalized random coefficient autoregressive models

Abstract In this paper, we consider the variable selection problem of the generalized random coefficient autoregressive model (GRCA). Instead of parametric likelihood, we use non-parametric empirical likelihood in the information theoretic approach. We propose an empirical likelihood-based Akaike in...

Full description

Bibliographic Details
Main Authors: Zhiwen Zhao, Yangping Liu, Cuixin Peng
Format: Article
Language:English
Published: SpringerOpen 2018-04-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-018-1680-4
_version_ 1819169299551485952
author Zhiwen Zhao
Yangping Liu
Cuixin Peng
author_facet Zhiwen Zhao
Yangping Liu
Cuixin Peng
author_sort Zhiwen Zhao
collection DOAJ
description Abstract In this paper, we consider the variable selection problem of the generalized random coefficient autoregressive model (GRCA). Instead of parametric likelihood, we use non-parametric empirical likelihood in the information theoretic approach. We propose an empirical likelihood-based Akaike information criterion (AIC) and a Bayesian information criterion (BIC).
first_indexed 2024-12-22T19:17:18Z
format Article
id doaj.art-252467bbfb184e3da89af6247d19c18c
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-22T19:17:18Z
publishDate 2018-04-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-252467bbfb184e3da89af6247d19c18c2022-12-21T18:15:29ZengSpringerOpenJournal of Inequalities and Applications1029-242X2018-04-012018111410.1186/s13660-018-1680-4Variable selection in generalized random coefficient autoregressive modelsZhiwen Zhao0Yangping Liu1Cuixin Peng2College of Mathematics, Jilin Normal UniversityCollege of Mathematics, Jilin Normal UniversityPublic Foreign Languages Department, Jilin Normal UniversityAbstract In this paper, we consider the variable selection problem of the generalized random coefficient autoregressive model (GRCA). Instead of parametric likelihood, we use non-parametric empirical likelihood in the information theoretic approach. We propose an empirical likelihood-based Akaike information criterion (AIC) and a Bayesian information criterion (BIC).http://link.springer.com/article/10.1186/s13660-018-1680-4Empirical likelihoodAkaike information criterionBayesian information criterionGeneralized random coefficient autoregressive modelVariable selection
spellingShingle Zhiwen Zhao
Yangping Liu
Cuixin Peng
Variable selection in generalized random coefficient autoregressive models
Journal of Inequalities and Applications
Empirical likelihood
Akaike information criterion
Bayesian information criterion
Generalized random coefficient autoregressive model
Variable selection
title Variable selection in generalized random coefficient autoregressive models
title_full Variable selection in generalized random coefficient autoregressive models
title_fullStr Variable selection in generalized random coefficient autoregressive models
title_full_unstemmed Variable selection in generalized random coefficient autoregressive models
title_short Variable selection in generalized random coefficient autoregressive models
title_sort variable selection in generalized random coefficient autoregressive models
topic Empirical likelihood
Akaike information criterion
Bayesian information criterion
Generalized random coefficient autoregressive model
Variable selection
url http://link.springer.com/article/10.1186/s13660-018-1680-4
work_keys_str_mv AT zhiwenzhao variableselectioningeneralizedrandomcoefficientautoregressivemodels
AT yangpingliu variableselectioningeneralizedrandomcoefficientautoregressivemodels
AT cuixinpeng variableselectioningeneralizedrandomcoefficientautoregressivemodels