Blood pressure and cardiac autonomic adaptations to isometric exercise training: A randomized sham‐controlled study
Abstract Isometric exercise training (IET) is increasingly cited for its role in reducing resting blood pressure (BP). Despite this, few studies have investigated a potential sham effect attributing to the success of IET, thus dictating the aim of the present study. Thirty physically inactive males...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Physiological Reports |
Subjects: | |
Online Access: | https://doi.org/10.14814/phy2.15112 |
_version_ | 1818333577991946240 |
---|---|
author | Anthony Decaux Jamie J. Edwards Harry T. Swift Philip Hurst Jordan Hopkins Jonathan D. Wiles Jamie M. O’Driscoll |
author_facet | Anthony Decaux Jamie J. Edwards Harry T. Swift Philip Hurst Jordan Hopkins Jonathan D. Wiles Jamie M. O’Driscoll |
author_sort | Anthony Decaux |
collection | DOAJ |
description | Abstract Isometric exercise training (IET) is increasingly cited for its role in reducing resting blood pressure (BP). Despite this, few studies have investigated a potential sham effect attributing to the success of IET, thus dictating the aim of the present study. Thirty physically inactive males (n = 15) and females (n = 15) were randomly assigned into three groups. The IET group completed a wall squat intervention at 95% peak heart rate (HR) using a prescribed knee joint angle. The sham group performed a parallel intervention, but at an intensity (<75% peak HR) previously identified to be inefficacious over a 4‐week training period. No‐intervention controls maintained their normal daily activities. Pre‐ and post‐measures were taken for resting and continuous blood pressure and cardiac autonomic modulation. Resting clinic and continuous beat‐to‐beat systolic (−15.2 ± 9.2 and −7.3 ± 5.6 mmHg), diastolic (−4.6 ± 5 and −4.5 ± 5.1), and mean (−7 ± 4.2 and −7.5 ± 5.3) BP, respectively, all significantly decreased in the IET group compared to sham and no‐intervention control. The IET group observed a significant decrease in low‐frequency normalized units of heart rate variability concurrent with a significant increase in high‐frequency normalized units of heart rate variability compared to both the sham and no‐intervention control groups. The findings of the present study reject a nonspecific effect and further support the role of IET as an effective antihypertensive intervention. Clinical Trials ID: NCT05025202. |
first_indexed | 2024-12-13T13:53:51Z |
format | Article |
id | doaj.art-253850aace624a2a8a773efa2c50a344 |
institution | Directory Open Access Journal |
issn | 2051-817X |
language | English |
last_indexed | 2024-12-13T13:53:51Z |
publishDate | 2022-01-01 |
publisher | Wiley |
record_format | Article |
series | Physiological Reports |
spelling | doaj.art-253850aace624a2a8a773efa2c50a3442022-12-21T23:42:58ZengWileyPhysiological Reports2051-817X2022-01-01102n/an/a10.14814/phy2.15112Blood pressure and cardiac autonomic adaptations to isometric exercise training: A randomized sham‐controlled studyAnthony Decaux0Jamie J. Edwards1Harry T. Swift2Philip Hurst3Jordan Hopkins4Jonathan D. Wiles5Jamie M. O’Driscoll6School of Psychology and Life Sciences Canterbury Christ Church University Kent UKSchool of Psychology and Life Sciences Canterbury Christ Church University Kent UKSchool of Psychology and Life Sciences Canterbury Christ Church University Kent UKSchool of Psychology and Life Sciences Canterbury Christ Church University Kent UKSchool of Psychology and Life Sciences Canterbury Christ Church University Kent UKSchool of Psychology and Life Sciences Canterbury Christ Church University Kent UKSchool of Psychology and Life Sciences Canterbury Christ Church University Kent UKAbstract Isometric exercise training (IET) is increasingly cited for its role in reducing resting blood pressure (BP). Despite this, few studies have investigated a potential sham effect attributing to the success of IET, thus dictating the aim of the present study. Thirty physically inactive males (n = 15) and females (n = 15) were randomly assigned into three groups. The IET group completed a wall squat intervention at 95% peak heart rate (HR) using a prescribed knee joint angle. The sham group performed a parallel intervention, but at an intensity (<75% peak HR) previously identified to be inefficacious over a 4‐week training period. No‐intervention controls maintained their normal daily activities. Pre‐ and post‐measures were taken for resting and continuous blood pressure and cardiac autonomic modulation. Resting clinic and continuous beat‐to‐beat systolic (−15.2 ± 9.2 and −7.3 ± 5.6 mmHg), diastolic (−4.6 ± 5 and −4.5 ± 5.1), and mean (−7 ± 4.2 and −7.5 ± 5.3) BP, respectively, all significantly decreased in the IET group compared to sham and no‐intervention control. The IET group observed a significant decrease in low‐frequency normalized units of heart rate variability concurrent with a significant increase in high‐frequency normalized units of heart rate variability compared to both the sham and no‐intervention control groups. The findings of the present study reject a nonspecific effect and further support the role of IET as an effective antihypertensive intervention. Clinical Trials ID: NCT05025202.https://doi.org/10.14814/phy2.15112blood pressureisometric exercise |
spellingShingle | Anthony Decaux Jamie J. Edwards Harry T. Swift Philip Hurst Jordan Hopkins Jonathan D. Wiles Jamie M. O’Driscoll Blood pressure and cardiac autonomic adaptations to isometric exercise training: A randomized sham‐controlled study Physiological Reports blood pressure isometric exercise |
title | Blood pressure and cardiac autonomic adaptations to isometric exercise training: A randomized sham‐controlled study |
title_full | Blood pressure and cardiac autonomic adaptations to isometric exercise training: A randomized sham‐controlled study |
title_fullStr | Blood pressure and cardiac autonomic adaptations to isometric exercise training: A randomized sham‐controlled study |
title_full_unstemmed | Blood pressure and cardiac autonomic adaptations to isometric exercise training: A randomized sham‐controlled study |
title_short | Blood pressure and cardiac autonomic adaptations to isometric exercise training: A randomized sham‐controlled study |
title_sort | blood pressure and cardiac autonomic adaptations to isometric exercise training a randomized sham controlled study |
topic | blood pressure isometric exercise |
url | https://doi.org/10.14814/phy2.15112 |
work_keys_str_mv | AT anthonydecaux bloodpressureandcardiacautonomicadaptationstoisometricexercisetrainingarandomizedshamcontrolledstudy AT jamiejedwards bloodpressureandcardiacautonomicadaptationstoisometricexercisetrainingarandomizedshamcontrolledstudy AT harrytswift bloodpressureandcardiacautonomicadaptationstoisometricexercisetrainingarandomizedshamcontrolledstudy AT philiphurst bloodpressureandcardiacautonomicadaptationstoisometricexercisetrainingarandomizedshamcontrolledstudy AT jordanhopkins bloodpressureandcardiacautonomicadaptationstoisometricexercisetrainingarandomizedshamcontrolledstudy AT jonathandwiles bloodpressureandcardiacautonomicadaptationstoisometricexercisetrainingarandomizedshamcontrolledstudy AT jamiemodriscoll bloodpressureandcardiacautonomicadaptationstoisometricexercisetrainingarandomizedshamcontrolledstudy |