Summary: | Abstract We present the full next-to-leading order (NLO) prediction for the jet-gap-jet cross section at the LHC within the BFKL approach. We implement, for the first time, the NLO impact factors in the calculation of the cross section. We provide results for differential cross sections as a function of the difference in rapidity and azimuthal angle betwen the two jets and the second leading jet transverse momentum. The NLO corrections of the impact factors induce an overall reduction of the cross section with respect to the corresponding predictions with only LO impact factors. We note that NLO impact factors feature a logarithmic dependence of the cross section on the total center of mass energy which formally violates BFKL factorization. We show that such term is one order of magnitude smaller than the total contribution, and thus can be safely included in the current prediction without a need of further resummation of such logarithmic terms. Fixing the renormalization scale μ R according to the principle of minimal sensitivity, suggests μ R about 4 times the sum of the transverse jet energies and provides smaller theroretical uncertainties with respect to the leading order case.
|