An approach to sulfate geoengineering with surface emissions of carbonyl sulfide

<p>Sulfate geoengineering (SG) methods based on lower stratospheric tropical injection of sulfur dioxide (<span class="inline-formula">SO<sub>2</sub></span>) have been widely discussed in recent years, focusing on the direct and indirect effects they would hav...

Full description

Bibliographic Details
Main Authors: I. Quaglia, D. Visioni, G. Pitari, B. Kravitz
Format: Article
Language:English
Published: Copernicus Publications 2022-05-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/22/5757/2022/acp-22-5757-2022.pdf
_version_ 1818217700792467456
author I. Quaglia
D. Visioni
G. Pitari
B. Kravitz
B. Kravitz
author_facet I. Quaglia
D. Visioni
G. Pitari
B. Kravitz
B. Kravitz
author_sort I. Quaglia
collection DOAJ
description <p>Sulfate geoengineering (SG) methods based on lower stratospheric tropical injection of sulfur dioxide (<span class="inline-formula">SO<sub>2</sub></span>) have been widely discussed in recent years, focusing on the direct and indirect effects they would have on the climate system. Here a potential alternative method is discussed, where sulfur emissions are located at the surface or in the troposphere in the form of carbonyl sulfide (COS) gas. There are two time-dependent chemistry–climate model experiments designed from the years 2021 to 2055, assuming a 40 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">Tg</mi><mo>-</mo><mi mathvariant="normal">S</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="f2da400167d0543c1d92eef2d84cad3e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00001.svg" width="54pt" height="15pt" src="acp-22-5757-2022-ie00001.png"/></svg:svg></span></span> artificial global flux of COS, which is geographically distributed following the present-day anthropogenic COS surface emissions (SG-COS-SRF) or a 6 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">Tg</mi><mo>-</mo><mi mathvariant="normal">S</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="163990e6943dee2fe272864c3ddbc533"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00002.svg" width="54pt" height="15pt" src="acp-22-5757-2022-ie00002.png"/></svg:svg></span></span> injection of COS in the tropical upper troposphere (SG-COS-TTL). The budget of COS and sulfur species is discussed, as are the effects of both SG-COS strategies on the stratospheric sulfate aerosol optical depth (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mi mathvariant="normal">Δ</mi><mi mathvariant="italic">τ</mi><mo>=</mo><mn mathvariant="normal">0.080</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="66pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="1ed86419d1791fb3911b06402498c099"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00003.svg" width="66pt" height="10pt" src="acp-22-5757-2022-ie00003.png"/></svg:svg></span></span> in the years 2046–2055), aerosol effective radius (0.46 <span class="inline-formula">µm</span>), surface <span class="inline-formula">SO<sub><i>x</i></sub></span> deposition (<span class="inline-formula">+</span>8.9 % for SG-COS-SRF; <span class="inline-formula">+</span>3.3 % for SG-COS-TTL), and tropopause radiative forcing (RF; <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mo>-</mo><mn mathvariant="normal">1.5</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="6c6a95f4e09a47dd93baf926c93fe4eb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00004.svg" width="35pt" height="10pt" src="acp-22-5757-2022-ie00004.png"/></svg:svg></span></span> <span class="inline-formula">W m<sup>−2</sup></span> in all-sky conditions in both SG-COS experiments). Indirect effects on ozone, methane and stratospheric water vapour are also considered, along with the COS direct contribution. According to our model results, the resulting net RF is <span class="inline-formula">−</span>1.3 <span class="inline-formula">W m<sup>−2</sup></span>, for SG-COS-SRF, and <span class="inline-formula">−</span>1.5 <span class="inline-formula">W m<sup>−2</sup></span>, for SG-COS-TTL, and it is comparable to the corresponding RF of <span class="inline-formula">−</span>1.7 <span class="inline-formula">W m<sup>−2</sup></span> obtained with a sustained injection of 4 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">Tg</mi><mo>-</mo><mi mathvariant="normal">S</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3467dc9edfdf867b36605c0768e5e497"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00005.svg" width="54pt" height="15pt" src="acp-22-5757-2022-ie00005.png"/></svg:svg></span></span> in the tropical lower stratosphere in the form of <span class="inline-formula">SO<sub>2</sub></span> (SG-SO2, which is able to produce a comparable increase of the sulfate aerosol optical depth). Significant changes in the stratospheric ozone response are found in both SG-COS experiments with respect to SG-SO2 (<span class="inline-formula">∼5</span> DU versus <span class="inline-formula">+</span>1.4 DU globally). According to the model results, the resulting ultraviolet B (UVB) perturbation at the surface accounts for <span class="inline-formula">−</span>4.3 % as a global and annual average (versus <span class="inline-formula">−</span>2.4 % in the SG-SO2 case), with a springtime Antarctic decrease of <span class="inline-formula">−</span>2.7 % (versus a <span class="inline-formula">+</span>5.8 % increase in the SG-SO2 experiment). Overall, we find that an increase in COS emissions may be feasible and produce a more latitudinally uniform forcing without the need for the deployment of stratospheric aircraft. However, our assumption that the rate of COS uptake by soils and plants does not vary with increasing COS concentrations will need to be investigated in future work, and more studies are needed on the prolonged exposure effects to higher COS values in humans and ecosystems.</p>
first_indexed 2024-12-12T07:12:02Z
format Article
id doaj.art-254f978ae5a947c8ae4ea4d5dd783c35
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-12T07:12:02Z
publishDate 2022-05-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-254f978ae5a947c8ae4ea4d5dd783c352022-12-22T00:33:36ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-05-01225757577310.5194/acp-22-5757-2022An approach to sulfate geoengineering with surface emissions of carbonyl sulfideI. Quaglia0D. Visioni1G. Pitari2B. Kravitz3B. Kravitz4Department of Physical and Chemical Sciences, Università dell'Aquila, 67100 L'Aquila, ItalySibley School for Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USADepartment of Physical and Chemical Sciences, Università dell'Aquila, 67100 L'Aquila, ItalyDepartment of Earth and Atmospheric Science, Indiana University, Bloomington, IN, USAAtmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA<p>Sulfate geoengineering (SG) methods based on lower stratospheric tropical injection of sulfur dioxide (<span class="inline-formula">SO<sub>2</sub></span>) have been widely discussed in recent years, focusing on the direct and indirect effects they would have on the climate system. Here a potential alternative method is discussed, where sulfur emissions are located at the surface or in the troposphere in the form of carbonyl sulfide (COS) gas. There are two time-dependent chemistry–climate model experiments designed from the years 2021 to 2055, assuming a 40 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">Tg</mi><mo>-</mo><mi mathvariant="normal">S</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="f2da400167d0543c1d92eef2d84cad3e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00001.svg" width="54pt" height="15pt" src="acp-22-5757-2022-ie00001.png"/></svg:svg></span></span> artificial global flux of COS, which is geographically distributed following the present-day anthropogenic COS surface emissions (SG-COS-SRF) or a 6 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">Tg</mi><mo>-</mo><mi mathvariant="normal">S</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="163990e6943dee2fe272864c3ddbc533"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00002.svg" width="54pt" height="15pt" src="acp-22-5757-2022-ie00002.png"/></svg:svg></span></span> injection of COS in the tropical upper troposphere (SG-COS-TTL). The budget of COS and sulfur species is discussed, as are the effects of both SG-COS strategies on the stratospheric sulfate aerosol optical depth (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mi mathvariant="normal">Δ</mi><mi mathvariant="italic">τ</mi><mo>=</mo><mn mathvariant="normal">0.080</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="66pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="1ed86419d1791fb3911b06402498c099"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00003.svg" width="66pt" height="10pt" src="acp-22-5757-2022-ie00003.png"/></svg:svg></span></span> in the years 2046–2055), aerosol effective radius (0.46 <span class="inline-formula">µm</span>), surface <span class="inline-formula">SO<sub><i>x</i></sub></span> deposition (<span class="inline-formula">+</span>8.9 % for SG-COS-SRF; <span class="inline-formula">+</span>3.3 % for SG-COS-TTL), and tropopause radiative forcing (RF; <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mo>-</mo><mn mathvariant="normal">1.5</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="6c6a95f4e09a47dd93baf926c93fe4eb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00004.svg" width="35pt" height="10pt" src="acp-22-5757-2022-ie00004.png"/></svg:svg></span></span> <span class="inline-formula">W m<sup>−2</sup></span> in all-sky conditions in both SG-COS experiments). Indirect effects on ozone, methane and stratospheric water vapour are also considered, along with the COS direct contribution. According to our model results, the resulting net RF is <span class="inline-formula">−</span>1.3 <span class="inline-formula">W m<sup>−2</sup></span>, for SG-COS-SRF, and <span class="inline-formula">−</span>1.5 <span class="inline-formula">W m<sup>−2</sup></span>, for SG-COS-TTL, and it is comparable to the corresponding RF of <span class="inline-formula">−</span>1.7 <span class="inline-formula">W m<sup>−2</sup></span> obtained with a sustained injection of 4 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">Tg</mi><mo>-</mo><mi mathvariant="normal">S</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3467dc9edfdf867b36605c0768e5e497"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5757-2022-ie00005.svg" width="54pt" height="15pt" src="acp-22-5757-2022-ie00005.png"/></svg:svg></span></span> in the tropical lower stratosphere in the form of <span class="inline-formula">SO<sub>2</sub></span> (SG-SO2, which is able to produce a comparable increase of the sulfate aerosol optical depth). Significant changes in the stratospheric ozone response are found in both SG-COS experiments with respect to SG-SO2 (<span class="inline-formula">∼5</span> DU versus <span class="inline-formula">+</span>1.4 DU globally). According to the model results, the resulting ultraviolet B (UVB) perturbation at the surface accounts for <span class="inline-formula">−</span>4.3 % as a global and annual average (versus <span class="inline-formula">−</span>2.4 % in the SG-SO2 case), with a springtime Antarctic decrease of <span class="inline-formula">−</span>2.7 % (versus a <span class="inline-formula">+</span>5.8 % increase in the SG-SO2 experiment). Overall, we find that an increase in COS emissions may be feasible and produce a more latitudinally uniform forcing without the need for the deployment of stratospheric aircraft. However, our assumption that the rate of COS uptake by soils and plants does not vary with increasing COS concentrations will need to be investigated in future work, and more studies are needed on the prolonged exposure effects to higher COS values in humans and ecosystems.</p>https://acp.copernicus.org/articles/22/5757/2022/acp-22-5757-2022.pdf
spellingShingle I. Quaglia
D. Visioni
G. Pitari
B. Kravitz
B. Kravitz
An approach to sulfate geoengineering with surface emissions of carbonyl sulfide
Atmospheric Chemistry and Physics
title An approach to sulfate geoengineering with surface emissions of carbonyl sulfide
title_full An approach to sulfate geoengineering with surface emissions of carbonyl sulfide
title_fullStr An approach to sulfate geoengineering with surface emissions of carbonyl sulfide
title_full_unstemmed An approach to sulfate geoengineering with surface emissions of carbonyl sulfide
title_short An approach to sulfate geoengineering with surface emissions of carbonyl sulfide
title_sort approach to sulfate geoengineering with surface emissions of carbonyl sulfide
url https://acp.copernicus.org/articles/22/5757/2022/acp-22-5757-2022.pdf
work_keys_str_mv AT iquaglia anapproachtosulfategeoengineeringwithsurfaceemissionsofcarbonylsulfide
AT dvisioni anapproachtosulfategeoengineeringwithsurfaceemissionsofcarbonylsulfide
AT gpitari anapproachtosulfategeoengineeringwithsurfaceemissionsofcarbonylsulfide
AT bkravitz anapproachtosulfategeoengineeringwithsurfaceemissionsofcarbonylsulfide
AT bkravitz anapproachtosulfategeoengineeringwithsurfaceemissionsofcarbonylsulfide
AT iquaglia approachtosulfategeoengineeringwithsurfaceemissionsofcarbonylsulfide
AT dvisioni approachtosulfategeoengineeringwithsurfaceemissionsofcarbonylsulfide
AT gpitari approachtosulfategeoengineeringwithsurfaceemissionsofcarbonylsulfide
AT bkravitz approachtosulfategeoengineeringwithsurfaceemissionsofcarbonylsulfide
AT bkravitz approachtosulfategeoengineeringwithsurfaceemissionsofcarbonylsulfide