CFD study to predict the effect of a passing ship on moored ships in a confined waterway

This study aims to present a practical practice to obtain a reliable numerical solution based on an Unsteady Reynolds Averaged Navier-Stokes (URANS) Computational Fluid Dynamics (CFD) to estimate the forces acting on moored ships during a passage of a ship in a confined waterway. The motion of the p...

Full description

Bibliographic Details
Main Authors: Chang Seop Kwon, Seong Mo Yeon
Format: Article
Language:English
Published: Elsevier 2023-01-01
Series:International Journal of Naval Architecture and Ocean Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S209267822300016X
Description
Summary:This study aims to present a practical practice to obtain a reliable numerical solution based on an Unsteady Reynolds Averaged Navier-Stokes (URANS) Computational Fluid Dynamics (CFD) to estimate the forces acting on moored ships during a passage of a ship in a confined waterway. The motion of the passing ship is implemented using an overset-grid method. The convergence of the numerical solutions depending on the spatial and temporal discretization are systematically analyzed, and the computational results are validated with a recent benchmark test data. In particular, the effect of the initial state of the passing ship in the unsteady simulation is dealt with in-depth. The simulation results when the passing ship departs at a constant speed and when it accelerates from a standstill are compared, and the influence of undesirable wave radiation generated with the departure of the passing ship at a constant speed is discussed.
ISSN:2092-6782